LUsol manual

Yanhui Jiang

SME. NJUST, Nanjing, P.R.China

April. 2021

LUsol is a light-weight software for solving a sparse linear system, which is usually generated from scientific or engineering problems. This software is developed mainly for education in a course about the finite element method and the finite volume method, where partial differential equations are converted to their discrete algebraic counterparts taking the general form

Ax = b

where A is a sparse matrix.

To apply **LUsol** to find the unknown x, users need to generate two input files:

a.in (Coefficient Matrix A),

b.in (Right-hand-side Vector b).

The solution will be stored in the output file:

x.out.

Each entry in the coefficient matrix is stored as a line in the triplet form as

row indice, column indice, value

Each entry in the RHS vector is stored as a line in the following format

row indice, value

Example:

$$\mathbf{A} = \begin{bmatrix} 2 & 0 & 0 & 0 & 1 & 0 \\ 1 & 2 & 0 & 0 & 0 & 1 \\ 0 & 1 & -10 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 4 & 0 & 0 & 0 & 0 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 7 \\ 11 \\ -24 \\ 4 \\ 1 \\ 8 \end{bmatrix}$$

In the **a.in** file:

1	1	1	2.0
2	1	5	1.0
3	2	1	1.0
4	2	2	2.0
5	2	6	1.0
6	3	2	1.0
7	3	3	-10.0
8	3	4	1.0
9	4	4	1.0
10	5	1	1.0
11	6	2	4.0

There are 11 lines corresponding to the 11 entries in the coefficient matrix A.

In the **b.in** file:

1	1	7.0
2	2	11.0
3	3	-24.0
4	4	4.0
5	5	1.0
6	6	8.0

There are 6 lines corresponding to the 6 entries in the RHS vector b.

The solution is found and saved in the **x.out** file.

1	0.10000000000000E+001
2	0.20000000000000E+001
3	0.30000000000000E+001
4	0.400000000000000E+001
5	0.500000000000000E+001
6	0.60000000000000E+001