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Magnetic Field Controlled Buckling and Post-buckling of an Inclined Beam  

 

Assuming that the 2x2x2 Octet-truss lattice undergoes homogeneous deformation, the 

characteristic unit is a rubber beam extracted from the lattice. We model the rubber beam as 

an elastica of bending stiffness EI  and length L . To make the model clear, Fig.1 is given to 

help the visualization. In the figure, the left end of the elastica is fixed on the base with a 

constant inclination angle  , and the right end of the elastica is fixed on a roller, which has a 

vertical translational degree of freedom. 

 

Fig.1 

Subject to no loadings, the elastica can retain its naturally straight configuration. After 

applying a uniform magnetic induction field B , how will the elastica behave? In this paper, 

we attempt to address this problem and figure out an approach to predict the value of the 

vertical displacement of the right end of the elastica, or the roller. 
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To begin with, recognizing that there exist coupling between elasticity and magnetization, 

we will analyze the problem by energy method. The system, which is composed of the 

elastica, the magnetic loading and the boundary conditions, comprises the elastic energy, 

applied magnetic energy and demagnetization energy. Fig. 2 is given to help setting up the 

concepts and notations to describe the problem. 

 

Fig.2 

Only the bending energy remains to be accounted for. For the large deflection bending of 

an elastica, the midline through the centroid of cross-section is our study object. At its initial 

configuration  , the midline is straight. Its natural arc length s  is used to differentiate each 

material particle. A Cartesian coordinate system is established to capture the position of each 

material particle. 
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The deformation gradient is denotes as 
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The local expansion of a material fiber in the beam is denoted as 

 det( )TJ  F F   (3) 

Since the material is deemed as inextensible, the constraint 1J   holds. In addition, the unit 

tangent at current configuration is 
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where,   is the angle between t and its initial direction, we call it rotation angle. Rewriting 

Eq.(2) in terms of Eq.(4) gives 
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By virtue of Frenet formula, one arrives at 
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where 0 n t  and n  is the unit normal defined as 
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Thus, the curvature can be expressed as a function of the deformation gradient.  

 
1d d d d

ds J d ds ds

 




 
     

 

t
F n n   (9) 

The bending energy can be expressed as 
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Where E  is Young’s modulus and I  moment of cross-section area. 

Besides of the elastic energy, the magnetic enthalpy also contributes to the total free 

energy. To study the magnetic enthalpy, the elastica is equivalently deemed to composed of a 
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series of isotropic magneto-rigid ellipsoids. Their principal radius vectors are denoted as 
1r , 

2r  and 3r , where the following relationship is assumed. 

 1 1rr t   (11) 

 2 2r r r n n   (12) 

 1 2 3r r r r     (13) 

As the axial symmetry, we consider a two dimensional plane expanded by 1r  and 2r . Let the 

ellipsoid be subject to a uniform magnetic induction field 

 0 0B H   (14) 

where the angle between 1r  and B  is denoted as  .  

The magnetic induction field exerts a moment to the ellipsoid. A constant magnetization 

M  will form inside the ellipsoid and depend on the internal magnetic field H . 

  HM H   (15) 

where the angle between 1r  and H  is denoted as  . 

     The internal magnetic field can be determined based on the shape of the ellipsoid and 

the demagnetizing factors 

 0  H H n M   (16) 

where the demagnetizing factor 
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Then, one can obtain 
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By using the independent model [] for magnetic enthalpy, the free energy of a magnetic 
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elastica is expressed as 
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Noting that 2      , after substituting Eq.(14) and Eq.(18) to Eq.(19), one arrives at 
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The  
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The stationary condition requires that  

   2 31
( )
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The first order variation of the free energy is 
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By move the derivative, one obtains 
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The equation of local equilibrium is  
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where    1 2 1 21 1n n             . Integrate Eq.(25) once with respect to s , 

one can obtain 
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We can see that the magnetic fields exerts a distributed moment to the elastic. The moment is 

denoted as  BM s . 

Through further derivation[], one obtains the second order variation of the free energy  

 

   
2

2

2

0

2 2
20 0

0 0

22
20 0

20 0
0

1 1

2 2

2 2

2 2 2

L L

L
L L

d
Q

d

A HEI d
ds ds

ds

A HEI d EI d
ds ds

ds ds



   





 
  



    

 
  

 

 
   

 

 

 

    (27) 

where      1 2 cos 2 2 cos 2 2             .  

Note that   is a constant in terms of   because   is unchanged. Besides, note that 

this term is distinctly different from the one in the free energy. Using the neutral equilibrium 

criterion, one can get the buckling equation and its boundary condition. 
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where 
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The general solution for Eq.(28) is  

   1 2sin( ) cos( )s C s C s      (29) 

After plugging the boundary conditions, one arrives at 

  sin 0L    (30) 

which means the critical value for   is the smallest one, which satisfies Eq. (30) 

 cr
L


    (31) 

Finally, from Eq.(31) and the definition of  , the critical magnetic induction field can be 

obtained as 
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After plugging 4 4I r  and 
2A r  into Eq.(32), the critical magnetic induction field 

can be determined as 

 0

2
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L
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
   (33) 

From Eq.(33), we know the critical magnetic induction depends linearly on the aspect ratio 

and the generalized stiffness respectively. Fig.3  

 

Fig.3 

After buckling, we can further analyze the post-buckling behavior of the elastica. For the 

elastica in a slightly deflected configuration, see Fig.2. Because of the vertical movement of 

the roller at the right end of the elastica, the reaction force will exert extra moments to the 

elastica. Denote the vertical displacement of the roller as  . We can get the coordinate of the 

roller as 

 
sin
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r

r

x L

y
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For any differential element in the elastica, the moment can be expressed as 

        r r B LM s P y y Q x x M s M         (35) 
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Note that the reaction force with amplitude R  is normal to the right boundary surface, P  

and Q  can be expressed as  

 cosP R    (36) 

 sinQ R     (37) 

Thus, Eq.(35) can be reduced as 

        cos sinr r B LM s R y y R x x M s M          (38) 

By differentiating the above equation with respect to s  and using the Euler-Bernoulli 

moment curvature relationship, one will obtain the post-buckling governing equation, which 

is different from the pre-buckling governing equation Eq. (25).   
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After integrating once with respective to  , one gets 
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Rearranging Eq.(40), one can explicitly obtain the expression for the curvature of the beam at 

any point:  
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Setting: 

 2R EI D   (42) 
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Hereto, the curvature Eq.(41) can be expressed as 
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From Eq.(45), the rotation angle of the inflection point  
 can be determined by the 

following equation 

    cos cos 2 2C D T           (46) 

From the expression above, we know that C  depends on the loading parameters and rotation 

angles of the inflection points. 

And the moment 

      cos cos 2 2M EI D T C            (47) 

By using the boundary condition  
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and plugging them into Eq.(47), one can get 
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For the odd mode, knowing that  0 0BM  , one has the condition 

  0 L BM M M L     (50) 

From Eq.(38) and, one can get 

  
cos sin

2

r r
L B

R y R x
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  
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If plugging Eq.(46) into Eq.(49), one can get another relationship between LM  and  
, as 

following 
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By combining Eq.(51) and Eq.(52), one is able to eliminate the 
LM  

For the even mode, one has the condition 

  0 L BM M M L    (53) 

By using Eq.(38), one get. 

  cos sinr r BR y R x M L     (54) 

The moment can be determined by Eq.(52) as 

          cos cos cos 2 cos 2 2L BM EI D T M L               
      (55) 

To state the problem more clearly, the forthcoming paragraph will give a discussion in 

detail. Firstly, it is known that the control parameter in the problem is the vertical 

displacement of the roller  , i.e. rx  and ry . What we are concerned about is the unknowns 

in the problem. Firstly, the reaction forces, which is described by D  and LM , are 

undetermined. Secondly, the magnetic force, which is described by T , is also required to be 

solved. Up to now, the condition that we have used is one of the boundary conditions, i.e. 

Eq.(48), which restrains the rotation angle of both ends of the elastica. From that boundary 

condition, the moment at the right end of the elastica LM  can be determined as Eq.(51) or 

Eq.(55) respectively in different cases. Thus, there remain two unknowns D  and T  here, it 

is needed to add two constrains to this statically indeterminate problem. Let’s put the Eq.(5), 

Eq.(6) and Eq.(39) which govern the x , y  and   here again to make the derivation 

clearer 
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From Eq. (56) and by virtue of Eq.(45), one can easily get the following three equations 

based on the number n  of inflection points. 
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where the operator   means a truncation to a number   . Thus C, D and T can be 

determined by Eq. (57)~(59). And  
, which is determined by C, D and T , can be 

determined by Eq.(46).  

 

Fig. 4 


