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Lecture 1 FEM = Discretization method + Rayleigh-Ritz method 

Since the advent of Newton’s masterpiece Mathematical Principles of Natural 

Philosophy in 1687, calculus had been taking part in scientific findings and 

engineering applications in nature, with an increasingly more and more important role. 

Nowadays, it has been widely acknowledged that most (if not all) natural phenomena, 

whether mechanical, electrical, or biological, could be described in terms of ordinary 

or partial differential equations (DEs) that capture the laws of physics, e.g., 

Newton’s law, Fourier’s law, Fick’s law, Ampere’s law, Gauss’s law, and Faraday’s 

law. How to solve the DE-governed field problems, e.g., initial value problems (IVP), 

boundary value problems (BVPs) arising in scientific research and engineering 

practice is a fundamental issue that is common to scientists and engineers. To deal 

with this issue, there are mainly two different kinds of approaches: one is the exact 

(closed-form) solution approach (i.e., analytical techniques); the other is the 

approximate solution approach (i.e., numerical techniques). To date, as the 

advancement of computer technology, numerical techniques show more great 

advantages over analytical techniques, especially in tackling field problems with 

complex boundary/initial conditions and loadings. Among various numerical 

techniques, finite element method (FEM) is one of the most prestigious. 

 The history of FEM dates back to 1877 when the Rayleigh-Ritz method was first 

invented by Rayleigh and later improved by Ritz in 1908. The Rayleigh-Ritz method 

is also known as Galerkin method since Galerkin proposed the concept of function 

orthogonality in the Lebesgue-2 integral (an inner product defined for a function 
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space) in 1915, which generalized the idea of Rayleigh-Ritz method. Herein, an 

example is presented to show the idea of Rayleigh-Ritz method. In the example, 

consider the following field problem to find the unknown field variable  ˆu u x  in 

the field domain 0 x 1   subject to the governing equation and boundary 

conditions as following 

 

   

2
4

2

d u
G.E.  u x ,   0 x 1

dx

B.C.   u 0 0,   u 1 0

   

 

  (1) 

Solution procedure 1 

Step 1: Derive the weak form of the differential governing equation by 

integration over the whole field domain with a test function  ˆv v x . 

 

2
1 1

4

20 0

2
1 1 1

4

20 0 0

1
1 1 1

4

0 0 0
0

d u
u vdx x vdx

dx

d u
vdx uvdx x vdx

dx

du du dv
v dx uvdx x vdx

dx dx dx

 
  

 



 



  

 

  

  

  (2) 

Step 2: Construct a trial function u  to approximate the solution u by a linear 

combination of N basis functions that satisfy the boundary conditions 

 
N

j j

j 1

u c 


   (3) 

where jc  are unknown constants called Ritz coefficients, and  j j
ˆ x   are basis 

functions that are constructed according to the boundary conditions 
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 

 

 

1

2

2

N

N

x 1 x

x 1 x

x 1 x







 

 

 

  (4) 

Step 3: Derive the system of N algebraic equations by letting iv   respectively 

in Eq. (2). 

 

   

N 1 1j 4i
i j j i

0 0
j 1

N

i j j i

j 1

dd
dx c x dx,   i 1,2,..., N

dx dx

B , c L


 

  





 
    

 





  



  (5) 

where  i jB ,   is called a bilinear form, and  iL   is called a linear form. 

Step 4: Solve for the Ritz coefficients according to Eq. (5) by hands or computers, 

and further obtain the approximate solution by Eq. (3). 

Solution procedure 2 

Step 1: Derive the variational form of the differential governing equation and 

further the functional   of the field variable by integration over the whole field 

domain with a variation u  of the field variable, where   is known as the 

variation operator. u  is a new and independent field variable, but has a very small 

perturbation/deviation from the function u.  
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 

2
1 1

4

20 0

2
1 1 1

4

20 0 0

1
1 1 1

4

0 0 0
0

2
1 1

2 4

0 0

2
1

2 4

0

d u
u udx x udx

dx

d u
udx u udx x udx

dx

du du d u
u dx u udx x udx

dx dx dx

1 du
u dx x udx 0

2 dx

1 du
u u 2x udx

2 dx

 

  


  



 
  

 



 



  



  
    

   



 
    

 

 

  

  

 


  (6)  

Note that    u x u 1 0    is assumed and the differential operator and the 

variation operator are interchangeable, i.e., 

 

2

d u du

dx dx

du d u du du 1 du

dx dx dx dx 2 dx





 

 
  

 



    
      

     

 

Step 2: This step is the same as the step 2 in the solution procedure 1. 

Step 3: Derive the system of N algebraic equations by substituting Eq. (3) into Eq. 

(6) as 

  
2 2

N N N1 j 4

j j j j j j
0

j 1 j 1 i 1

d1
c c c 2x c dx

2 dx


 

  

   
      

   
     (7) 

and applying the necessary conditions for minimization of the functional  jI c  
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   

1 2 N

N N1 j 4i
j i j j i

0
j 1 j 1i

N 1 1j 4i
i j j i

0 0
j 1

N

i j j i

j 1

0,   0,   ...,   0
c c c

dd
0 c c x dx,   i 1, 2,..., N

c dx dx

dd
dx c x dx,   i 1, 2,..., N

dx dx

B , c L


  


 

  

 





  
  

  




    





 
    

 





 

  



  (8) 

Step 4: Solve for the Ritz coefficients according to Eq. (8) by hands or computers, 

and further obtain the approximate solution by Eq. (3). 

It is noted that the key of applying Rayleigh-Ritz method is the construction of 

the trial function (i.e., Eq. (3)). Numerically speaking, the construction process is an 

interpolation process by invoking a finite set of degrees of freedom (DoF). The most 

significant feature of Rayleigh-Ritz method is that the test function has to be chosen 

among the basis functions. If this requirement is removed, Rayleigh-Ritz method 

turns into a more general method called weighted residual method (e.g., co-location, 

co-volume, moment, least square). In addition, the Reyleigh-Ritz method considers 

the whole field domain when testing the residual of the differential equations. This 

limits its application to field problems with complex field domain. To overcome this, 

in 1943, R. Courant proposed a method where a complex field domain was first 

discretized by a finite number of triangle subdomains, and a trial function was then 

constructed with respect to each subdomain. Courant’s method is deemed as the first 

FEM published. While his method was not popular then due to the low computation 

capability of that time, however, the idea of combining discretization method and 
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Reyleigh-Ritz method gradually showed up. In 1944, J.H. Argyris proposed a similar 

idea and apply it to aircraft design. And later, the power of this idea is enlarged by 

computer technology.  

During the WWII, computer technology experienced a time of fast development 

due to various military demands, e.g., in 1946, the first modern electronic computer 

ENIAC was made for ballistic trajectory calculation in the USA. This extremely 

boosts the development of FEM and its applications. In 1950s, a large number of 

scholars (Clough, Wilson, Taylor, et.al.) from University of California at Berkeley in 

the USA endeavored themselves to research activities related to computer-aided 

design of aircraft, sponsored by Boeing company. Their work laid the foundation of 

the modern FEM. From then on, during 1960s-1980s, various FEM software emerged, 

e.g., SAP (Wilson, 1969, USA), NASTRAN (NASA, 1969, USA), ANSYS (Swanson, 

1970, USA), MARC (Marcal, 1971, USA), ANIDA (Bathe, 1975, USA), DYNA3D 

(Hallquist, 1976, USA), ABAQUS (Hibbitt et.al., 1978, USA), COMSOL (Littmarck 

et.al., 1986, Sweden), RADIOSS (Mecalog, 1987, France). Most of these software 

products targeted the structural design/analysis market in the areas of civil 

engineering, mechanical engineering, aerospace engineering, etc. From the 1990s to 

the current, commercialization of these software products is the main trend since the 

state-of-the-art FEM is very mature. During the course, many small companies 

were acquired by large companies, e.g., ABAQUS was acquired by SIMULIA in 2005, 

ANSYS was acquired by SYNOSYS in 2024. Apart from commercial FEM software, 

these days, open-source FEM software become popular, such as MOOSE, GetFEM, 
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FEniCS, FreeFEM, Code_Aster, and CalculiX, just to name a few. 
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Lecture 2 Mathematical preliminaries 

 2.1 Basic matrix notion 

Since a FEM relies on discretization methods to transform a continuum field 

domain into a discrete field domain (i.e., elements connected by nodes) and 

interpolation methods to approximate a continuum field variable in terms of its 

nodal value, the resulting system of algebraic equations from continuum field 

problems could be finally described by matrices and vectors, which suit the computer 

operation well. For example, for the following system of algebraic equations 

 

11 1 12 2 13 3 1

21 1 22 2 23 3 2

31 1 32 2 33 3 3

A x A x A x b

A x A x A x b

A x A x A x b

  


  
   

  (1) 

It can be rewritten in matrix form as  

 Ax b   (2) 

where 

 

11 12 13 1 1

21 22 23 2 2

31 32 33 3 3

A A A x b

A A A ,   x ,   b

A A A x b

     
     

  
     
          

A x b   (3) 

are called the system matrix, unknown vector, and right-hand-side vector respectively. 

 Since calculation based on matrix operation is intensively used in FEM. We will 

go through some important concepts about matrix algebra. 

   Definition 1-Matrix. For a general matrix, the number of rows “m” and number 

of columns “n” are usually not equal. 
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11 12 13 1n

21 22 23 2n

m n 31 32 33 3n

m1 m2 m3 mn

A A A . A

A A A . A

A A A . A

. . . . .

A A A . A



 
 
 
 
 
 
  

A   (4) 

For an entry in the matrix, there is a unique row number and column number to 

name the entry. Example for the i-th row and j-th column entry, it is denoted as 

 ijA ,  1 i m,  1 j n      (5) 

Definition 2-Column matrix.  

Example: 

 
3 1

1

3

2



 
 


 
  

A   (6) 

Definition 3-Row matrix. 

Example: 

  1 3 1 3 2 A   (7) 

 Definition 4-Square matrices. When the number of rows and the number of 

columns are equal, the matrix is called a square matrix. For an n n  square matrix 

n nA , it is usually called an n-th order square matrix. 

Example: a 3
rd

 order square matrix 

 

1 4 5

7 2 6

8 9 3

 
 


 
  

A   (8) 

There are two special square matrices: one is called identity matrix n nI  whose 

diagonal entries are unit, and the other entries are null; the other is called null matrix 

n n0 .  
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 Example: 

 
3 3 3 3

1 0 0 0 0 0

0 1 0 ,   0 0 0

0 0 1 0 0 0

 

   
   

 
   
      

I 0   (9) 

Definition 5-Matrix equality. For two matrices m nA  and m nB  of the same 

dimensions, they are equal if and only if their entries are equal 

ij ijA B ,  1 i m,  1 j n      respectively. 

Example: 

 

2 3

2 3

2 3 2 3

1 2 3

3 2 1

1 2 3

3 2 1

=





 

 
  
 

 
  
 



A

B

A B

  (10) 

Definition 6-Matrix addition and subtraction. For two matrices m nA  and 

m nB  of the same dimensions, their addition and subtraction are defined in terms of 

their entries 

 
ij ij ij

ij ij ij

C A B ,  1 i m,  1 j n

D A B ,  1 i m,  1 j n

     

     
  (11) 

Example: 

 

2 3

2 3

2 3 2 3 2 3

2 3 2 3 2 3

1 2 3

3 2 1

1 2 3

3 2 1

2 4 6
+ =

6 4 2

0 0 0
- =

0 0 0





  

  

 
  
 

 
  
 



 
  

 

 
  

 

A

B

C A B

D A B

  (12) 
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Definition 7-Scalar multiplication. For a matrix 
m nA , a scalar times the matrix 

means the scalar times every entry of the matrix. 

Example: 

 

2 3

2 3

1 2 3

3 2 1

s 2

2 4 6
s

6 4 2





 
  
 





 
  
 

A

A

  (13) 

Definition 8-Matrix multiplication. For two matrices m nA  and p qB , their 

multiplication m q m n p q  C A B  takes place only when n p , and the entry in m qC  

is evaluated as 

 
n

ij ik kj

k 1

C A B ,  1 i m,  1 j q


       (14) 

Example: 

 

2 3

3 2

2 2 2 3 3 2

1 2 3

3 2 1

2 1

3 2

4 3

20 14

14 10





  

 
  
 

 
 


 
  



 
   

 

A

B

C A B

  (15) 

Note that matrix multiplication doesn’t commute 

 AB BA   (16) 

Definition 9-Matrix transpose. For a matrix m nA , its transpose is denoted as 

T

n mA . 

 
T

ji ijA A ,  1 i m,  1 j n       (17) 
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Example: 

 

2 3

T

3 2

1 2 3

3 2 1

1 3

2 2

3 1





 
  
 



 
 


 
  

A

A

  (18) 

For the transpose of a matrix multiplication, the following identity holds 

  
T T TAB B A   (19) 

Example: 

 

 

2 3

3 2

T T T

2 2 2 3 3 2 2 3 3 2

1 2 3

3 2 1

2 1

3 2

4 3

20 14

14 10





    

 
  
 

 
 


 
  



 
    

 

A

B

C A B B A

  (20) 

Definition 10-Symmetric matrix. If a square matrix satisfies the following 

condition, then it is called a symmetric matrix 

 TA A   (21) 

Example: 

 

1 2 3

2 2 4

3 4 3

 
 


 
  

A   (22) 

Definition 11-Skew-symmetric matrix. If a square matrix satisfies the following 

condition, then it is called a skew-symmetric matrix 

 T A A   (23) 
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Example: 

 

0 2 3

2 0 4

3 4 0

 
 

 
 
  

A   (24) 

Definition 12-Determinant, minor, and cofactor of a square matrix.  

For a 1
st
 order square matrix, its determinant is defined as 

 

 11

11

A

det A







A

A

  (25) 

For a 2
nd

 order square matrix, its determinant is defined as 

 

11 12

21 22

11 12

11 22 12 21

21 22

A A

A A

A A
det A A A A

A A

 
  
 



  

A

A

  (26) 

For a 3
rd

 order square matrix, its determinant is defined as 

 

11 12 13

21 22 23

31 32 33

11 12 13

21 22 23

31 32 33

11 22 33 12 23 31 13 21 32

13 22 31 11 23 32 12 21 33

A A A

A A A

A A A

A A A

det A A A

A A A

A A A A A A A A A

A A A A A A A A A

 
 


 
  





  

  

A

A   (27) 

For higher order square matrix n nA , its determinant could be evaluated by the 

so-called Laplace expansion method recursively according to an arbitrary i-th row or 

an arbitrary j-th column as following 

 
n n

ik ik kj kj

k 1 k 1

det A C A C
 

  A   (28) 
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where the component of the cofactor matrix 
n nC  is defined as 

  
i j

ij ijC 1 M


    (29) 

where the minor ijM  corresponding to the ijA  is defined as the determinant of the 

sub-matrix after eliminating the i-th row and j-th column of the matrix n nA . 

Example: 

 

1 2 3

2 2 4

3 4 3

 
 


 
  

A   (30) 

By Laplace expansion about the first row, one has 

  

 

 

11

12

13

1 1

11 11

1 2

12 12

1 3

13 13

11 12 13

2 4
M det 10

4 3

2 4
M det 6

3 3

2 2
M det 2

3 4

C 1 M 10

C 1 M 12

C 1 M 6

det 1 C 2 C 3 C 8







 
   

 

 
   

 

 
  

 



    

   

   



      A

  (31) 

Definition 13-Adjoint and inverse of a square matrix. The adjoint matrix of a 

square matrix n nA  could be evaluated by transposing the matrix of cofactors. 

 Tadj A C   (32) 

The inverse of a square matrix n nA  could be evaluated as 

 
1 adj

det

 
A

A
A

  (33) 

Example: 
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1 2 3

2 2 4

3 4 3

 
 


 
  

A   (34) 

Calculate all the minors 

 

 

11 12 13

21 22 23

31 32 33

1 1

11 11

2 4 2 4 2 2
M det 10,M det 6,M det 2

4 3 3 3 3 4

2 3 1 3 1 2
M det 6,M det 6,M det 2

4 3 3 3 3 4

2 3 1 3 1 2
M det 2,M det 2,M det 2

2 4 2 4 2 2

C 1 M


     
            

     

     
             

     

     
            

     



       

     

     

1 2 1 3

12 12 13 13

2 1 2 2 2 3

21 21 22 22 23 23

3 1 3 2 3 3

31 31 32 32 33 33

1

10,C 1 M 6,C 1 M 2

C 1 M 6,C 1 M 6,C 1 M 2

C 1 M 2,C 1 M 6,C 1 M 2

10 6 2

6 6 2

2 2 2

10 6 2 10 6 2
1

adj 6 6 2 ,  6
8

2 2 2

 

  

  



        

            

            



 
 

 
 
  



  
 

  
 
  

C

A A 6 2

2 2 2

 
 


 
  

  (35) 

Definition 15-Orthogonal matrix 

A square matrix A  is called orthogonal if it satisfies the following condition 

 

T 1

T T

or

I



 

A A

AA A A

  (36) 

2.2 Solving a system of linear equations. 

Suppose we have a system of linear equations 

 Ax b   (37) 

where 
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1 2 3 1

2 2 4 ,  1

3 4 3 1

   
   

 
   
      

A b   (38) 

2.2.1 Cofactor method 

We directly use the result in Eq. (35). 

 

1

1

10 6 2
1

6 6 2
8

2 2 2

1 4

1 4

1 4





 
 

 
 
  



 
 

 
 
  

A

x A b

  (39) 

2.2.2 Cramer’s rule 

Step 1: Evaluate the following determinants 

 

1

2

3

1 2 3

det 2 2 4 8

3 4 3

2 3

det 2 4 2

4 3

1 3

det 2 4 2

3 3

1 2

det 2 2 2

1

1

1

1

1

1

1

14

1

3

 

  

 

 

A

A

A

A

  (40) 

Step 2: Evaluate the unknowns 

 

1

2

3

det 1 4
1

det 1 4
det

det 1 4

   
   

 
   
      

A

x A
A

A

  (41) 

2.2.3 Gaussian elimination  
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Step 1: Construct an augmented matrix composed of A  and b . 

  

1 2 3

2 2 4

3 4

1

1

3 1

 
 


 
  

A b   (42) 

Step 2: Produce an upper triangle matrix 

      Row 2-2*Row 1. 

      Row 3-3*Row 1 

 

1 2 3

0 2 2

0 2 26

1

1

 
 

 
 
   





  (43) 

      Row 3-Row2 

 

1 2 3

0 2 2

0 0 4

1

1

1

 
 

 
 
  





  (44) 

Step 3: Back substitution. 

    
3

2 3

1 3 2

x 1 4

x 1 ( 2) x / 2 1 4

x 1 3 x 2 x 1 4



      

      

  (45) 

So  

 

1

2

3

x 1 4

x 1 4

x 1 4

   
   

 
   
      

x   (46) 

2.3 Integral relations (also known as Green formulae) 

Integral of differential equations is essential in FEM during the derivation of the 

corresponding weak form or functional. Herein, just list some useful relations, these 

relations are known as Green formulae. 

2.3.1 Integration by part.  
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For brevity, consider the formula for two functions u and v of one independent 

variable x 

  
b bb

aa a

du dv
vdx uv u dx

dx dx
     (47) 

This could be understood by the well-known relationship 

  
d du dv

uv v u
dx dx dx

    

2.3.2 Gradient theorem.  

The integral of the gradient of a scalar field over a domain is equal to the integral 

of outer normal times the scalar field over the boundary of the domain. 

 udV udA
 
   n   (48) 

where 
n dim

i

i 1 ix


 


 e  is the Nabla operator, ndim means the dimension of the space, 

and n  denotes the unit outer normal direction. 

2.3.3 Divergence theorem. 

 The integral of the divergence of a vector field over a domain is equal to the 

integral of outer normal projection of the vector field over the boundary of the 

domain. 

 dV dA
 
   v n v   (49) 

2.3.4 Example (Integration by parts) 

Suppose we are assigned to solve the following field problem 

 

 

   

2

2

x L xd u
G.E.  ,   0 x L

dx 2

B.C.   u 0 0,   u L 0


  

 

  (50) 

Solution procedure 1 
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Step 1: Derive the weak form of the differential governing equation by 

integration over the whole field domain with a test function  v v̂ x . 

 

 

 

2
L L

20 0

L
L L

0 0
0

x L xd

v

u
dx dx

dx 2

x L xdu du d

v v

vdx dx
dx dx dx 2

v







 

 

 

  (51) 

Step 2: Construct a trial function u  to approximate the solution u by a linear 

combination of N basis functions that satisfy the boundary conditions 

 
N

j

1

j

j

u c 


   (52) 

where jc  are unknown constants called Ritz coefficients, and  j j
ˆ x   are basis 

functions that are constructed according to the boundary conditions. For brevity, 

herein, we consider two term approximation (i.e., N=2) 

 

1

1

2

1 21 2

2

x
sin

L

x
x s

c

in
L

x x
  si cn x sin

L L

u c

c







 

 

 
  

 

 
  

 



 

   
    

   

  (53) 

Step 3: Introduce u u  into Eq. (51) and derive the system of 2 algebraic 

equations by letting i , i 1,2v    respectively 

For i=1, one has 
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 

 

   

 

1
1 1

1
1

1
1

1

L
L L

0 0
0

L L

0 0

1 2

L L
1 2

0 0

L L L
1 2

0 0

1 2

2

1
0

1 1
12

x L xdd d
dx dx

dx dx dx 2

Apply B.C.

x L xdd
dx dx

dx dx 2

Plug 

d x L xd
dx dx

dx dx 2

x L xd d d d
dx dx dx

dx dx dx dx

u u

u

u c c

c c

c c
2

 

 


 







  



 




 

 

 
 



   
     
  






 

 

 

  

  (54) 

 For i=2, similarly, one has 

 

 

 

   

 

2
2 2

2
2

2
2

1

L
L L

0 0
0

L L

0 0

1 2

L L
1 2

0 0

L L L
1 2

0 0

1 2

2

1
0

2 2
22

x L xdd d
dx dx

dx dx dx 2

Apply B.C.

x L xdd
dx dx

dx dx 2

Plug 

d x L xd
dx dx

dx dx 2

x L xd d d d
dx dx dx

dx dx dx dx

u u

u

u c c

c c

c c
2

 

 


 







  



 




 

 

 
 



   
     
  






 

 

 

  

  (55) 

Step 4: Form a system of linear equations, evaluate integrals and solve for the 

Ritz coefficients 

 

 

 

L L L
1 2

0 0 0

1

L

0

1
1

2 2
L L1 2

20 0

1

2

x L xd d d d
dx dx dx

dx dx dx dx 2

d d d d x L x
dx dx dx

dx dx dx

c

d 2

c

x

 


 

 






  
      

    
          

  

  

  (56) 

Solution procedure 2 

Step 1: Derive the variational form of the differential governing equation and 

further the functional   of the field variable by integration over the whole field 

domain with a variation u  of the field variable, where   is known as the 
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variation operator. u  is a new and independent field variable, but has a very small 

perturbation/deviation from the function u. 

 

 

 

 

   

2
L L

20 0

L
L L

0 0
0

2
L L

0 0

2
L

0

x L xd u
udx udx

dx 2

x L xdu du d u
u dx udx

dx dx dx 2

x L x1 du
dx udx 0

2 dx 2

1 du
u x L x udx

2 dx

 


 









 



  
   

   



 
    

 

 

 

 



  (57)  

Note that    u x u L 0    is assumed and the differential operator and the 

variation operator are interchangeable. 

 

2

d u du

dx dx

du d u du du 1 du

dx dx dx dx 2 dx





 

 
  

 



    
      

     

  

Step 2: This step is the same as the step 2 in the solution procedure 1. 

Step 3: Derive the system of N algebraic equations by substituting Eq. (53) into 

Eq. (57) as 

     
2

L
1 2

1
0

1 2 1 2 1 2 2

d d1
, x L x dx

2 x
c c

dx d
c c c c

 
 

 
      

 
   (58) 

and applying the necessary conditions for minimization of the functional  jI c  
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 

 

 

1 2

L
1 1 2

1

2

0
1

L
2 1 2

2
0

2

L L

1

1 1 2 1

2

1

0 0

L L
1 2 2

0 0

2

1

2

0,   0
c c

x L xd d d
dx

c dx dx dx 2

x L xd d d
dx

c dx dx dx 2

x L x

d

c c

c

d d d d
dx dx

dx dx dx x

d d d d
dx dx

dx dx d

c

x

c

dx

c

  


  


   

   

 
 

 



  
   

  

  
   

  



 
    

   
   

  





 

 
 

L

1
0

L

2
0

dx
2

x L x
dx

2





 
 
 

 
 
 





  (59) 

 Step 4: Solve the system for the Ritz coefficients. 

 

 



  Lecture 3 Energy method  Yanhui Jiang 

1 

 

Lecture 3 Energy method 

3.1 Basic notions 

 

Fig. 1 

Definition-1 Configuration 

As shown in Fig. 1, the configuration of a body is the set of positions of all its 

constitutive particles. Usually, the initial configuration of a body is defined as the 

field domain of interest denoted as  . Its boundary is denoted as   that includes 

the part u  for boundary conditions and the part F  for loadings. A 

displacement field u defined in the field domain leads to the current configuration 

(deformed configuration) of the body. 

     ,X  ux X X X   (1) 

Definition-2 Work of external forces and external energy 

The work of an external force F from environment acting through a displacement 

field u in a physical body is also called the external energy, e.g, for a boundary 

loading, the external work is written as 

  
F

ext dA


   uFu   (2) 

Note that a force is a vector, a displacement is a vector, and the work is defined as 
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their inner product, which is a scalar. 

Definition-3 Work of internal forces and internal energy(Strain energy) 

The displacement field u  in the body results in internal forces due to material 

constitutive response. Similar to external forces, the work done by the internal forces 

is called internal energy or strain energy, e.g., the work could be stored in the form 

of strain energy as following 

  int VWd


  u   (3) 

where W is a scalar function of the gradient of the displacement field u  called strain 

energy density. 

Definition-4 Conservative system 

If work done by external forces due to environment and internal forces due to 

constitutive response of the body are independent of path from the initial 

configuration to the current configuration, we say the system including the body and 

the environment is a conservative system. That means there is no dissipation of energy, 

and the level of potential energy of the system is totally determined by the 

configuration of the body. 

Definition-5 Quasi-static process 

For a process of the configuration change of a body, if the velocity of all particles 

in the body is nearly zero (i.e., the inertial force is negligible), the process is called 

quasi-static. 

3.2 Principle of stationary potential energy 

For a conservative system in a quasi-static process, “Potential energy” point of 
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view is an alternative of the “Free body diagram/Differential body” point of view for 

system equilibrium analysis (i.e., static analysis). Sometimes, the “Potential energy” 

point of view is easier to apply to derive the governing equations and boundary 

conditions for a field problem. 

For a field problem arising from a conservative system in a quasi-static process, 

the total potential energy (or simply called potential energy)   of the system 

could always be found by integrating differential governing equations by field 

variations as shown in the previous lectures, or by the so-called potential energy 

analysis).  

In a potential energy analysis, the general form of the potential energy of a 

conservative system in a quasi-static process usually takes the following form 

      int ext  u u u   (4) 

where int  is the internal energy of the body due to constitutive laws, ext  is the 

external work done by the environment. 

Unlike physicists, mathematicians prefer to use a more general term “functional” 

instead of “potential energy”. They define functional as a scalar value function 

contains integral of a field variable over a field domain, e.g., the line, area, 

volume of interest. 

For an admissible and equilibrium configuration defined by a displacement field

u , if vary the configuration by such an incremental displacement field  u u , 

where 1  is a very small scalar and u  is defined as a variation of the 

displacement field (or called a virtual displacement field), which is required to be 
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null(zero) at the boundary of the field domain, then the change of the total potential 

energy therefore is stated as 

          u u u u u   (5) 

By using Taylor’s expansion in terms of the scalar   about 0 , one has 

    
 

 2

0

0

d
O

d




 


 





 
     

u u
u u u u   (6) 

Introducing Eq. (6) into Eq. (5), one has  

  
 

 2

0

d
O

d



  








 
   

u u
u u   (7) 

Since  1, the higher order term  2O   in the above equation is negligible. So, 

the change of potential energy is dominated by the first order term, whose coefficient 

is defined as the variation of the potential energy   u  with respect to the variation 

of the displacement field u .  

   
 

0

d

d











 
 

u u
u u   (8) 

The principle of stationary potential energy states that the condition for an 

equilibrium configuration should satisfy the following condition 

    0  u u   (9) 

This statement means, for an arbitrary variation of the displacement field u , the 

potential energy   u  would not change, i.e., the potential energy is stationary. 

Moreover, this means the body of interest is in an equilibrium configuration. 

Therefore, once the potential energy is determined, the variational form of the 

governing differential equations could be readily obtained by Eq. (8). In addition, the 

equilibrium configuration could be achieved at the stationary point of the potential 
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energy (minimum point, maximum point, or saddle point) by Eq. (9). When the 

stationary point is a minimum point, the principle of stationary potential energy is also 

called principle of minimum potential energy. In solid and structural mechanics, the 

principle is also known as principle of virtual displacement/work.  

It is noted that, for a system with finite degrees of freedom (e.g., N), Eq. (8) can 

be written as 

 

 

 

 

 

1 1 2 2 N N

1 1 2

1

0

0

N

i 1
0

2 N N

i

1

i

i

N

i 1

d

,

u u ,u u u u

u u ,u u u u
u

u u

u

.

u

d

d ,...,

d

..,









  

  






 



  
















 

   


    
  

   










u u

  (10) 

Thus, the principle of stationary potential energy could be stated as 

 
i

0,i 1,2,.. N
u

.,


 


  (11) 

3.3 Total potential energy of a spring 

As shown in Fig. 2, a spring is elastic and its stiffness is denoted as k. We use 

energy method to find it equilibrium displacement u subject to an external force F. 

 

Fig. 2 
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 After energy analysis, the total potential energy of the spring is directly written as 

   21
u ku Fu

2
     (12) 

The variation of the total potential energy with respect to the variation of the 

displacement field is derived as 

 

  
 

   

 

 

0

2

0

0

d u u
u u

d

d 1
k u u F u u

d 2

k u u u F u

ku F u








 



 


  









 
 

 
    

 

    

 

  (13) 

By the principle of stationary potential energy, one has the equilibrium equation 

 

    u u ku F u 0

ku F 0

     



 

  (14) 

Alternatively, since the system is discrete, if directly uses the derivative of the 

potential energy, one has 

 
 d u

ku F 0
du


     (15) 

We see that both methods are equivalent. 

3.4 Total potential energy of a bar 

As shown in Fig. 3, a bar is of length L, cross section area A, and Young’s 

modulus E subjected to a distributed force F(x)=kx. We use energy method and 

Rayleigh-Ritz method to approximate the equilibrium displacement field u(x). 
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Fig. 3 

The total potential energy of the bar is  

  
2

L L

0 0

1 du
u AE dx kxudx

2 dx

 
   

 
    (16) 

Construct a trial function as 

   2

1 2u x c x c x    (17) 

Plugging Eq. (17) into Eq. (16), one has 

    
L L2 2 3

1 2 1 2 1 2
0 0

AE
c ,c c 2c x dx c kx c kx dx

2
        (18) 

The equilibrium condition is therefore derived as 

 

 
 

 
 

L L
1 2 2

1 2
0 0

1

L L
1 2 3

1 2
0 0

2

c ,c
AE c 2c x dx kx dx 0

c

c ,c
AE c 2c x 2xdx kx dx 0

c


   




   



 

 

  (19) 

Recast the system of linear equations in matrix form as 

 

L L L
2

0 0 01

L L L
2 32

0 0 0

dx 2xdx kx dxc
AE

c2xdx 4x dx kx dx

   
        
 

      

  

  
  (20) 

After evaluating the integrals, one has 

 

32

1

2 3
42

k
LL L

c 3
AE 4

c kL L
L3

4

 
              
     

  (21) 

The solution to the linear system is 
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2

1

2

7kL
c 12AE

c kL

4AE

 
  

   
   
  

  (22) 

Introducing Eq. (22) into Eq. (17), one obtains an approximate solution to the bar 

problem 

  
2

27kL kL
u x x x

12AE 4AE
    (23) 

Moreover, the tip displacement is given as 

  
3kL

u L
3AE

   (24) 

3.5 Total potential energy of a beam 

 

Fig. 4 

As shown in Fig. 4, a beam is of length L, bending moment of inertial I, and 

Young’s modulus E subjected to a distributed force F(x)=kx. We use energy method 

and Rayleigh-Ritz method to approximate the equilibrium deflection field v(x). 

The total potential energy of the beam is  

  
2

2
L L

20 0

1 d v
v EI dx kxvdx

2 dx

 
   

 
    (25) 

Construct a trial function as 

   2 3

1 2v x c x c x    (26) 
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Plugging Eq. (26) into Eq. (25), one has 

    
L L2 3 4

1 2 1 2 1 2
0 0

EI
c ,c 2c 6c x dx c kx c kx dx

2
        (27) 

The equilibrium condition is therefore derived as 

 

 
 

 
 

L L
1 2 3

1 2
0 0

1

L L
1 2 4

1 2
0 0

2

c ,c
EI 2 2c 6c x dx kx dx 0

c

c ,c
EI 2c 6c x 6xdx kx dx 0

c


   




   



 

 

  (28) 

Recast the system of linear equations in matrix form as 

 

L L L
3

0 0 01

L L L
2 42

0 0 0

4dx 12xdx kx dxc
EI

c12xdx 36x dx kx dx

   
        
 

      

  

  
  (29) 

After evaluating the integrals, one has 

 

4
2

1

2 3
52

k
L

c4L 6L 4
EI

c k6L 12L
L

5

 
    

     
    

  

  (30) 

The solution to the linear system is 

 

3

1

2
2

3kL

c 20EI

c 7kL

120EI

 
  
  
  
  

  (31) 

Introducing Eq. (31) into Eq. (26), one obtains an approximate solution to the beam 

problem 

  
3 2

2 33kL 7kL
v x x x

20EI 120EI
    (32) 

Moreover, the tip deflection is given as 

  
511kL

v L
120EI

   (33) 
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Appendix: analogy for 1-D linear elastic structural members 

In this course, the unknown field variable is chosen as the displacement field. For 

1-D linear elastic structural members, the axial strain of a bar and the curvature of a 

beam are related to the strain energy in a quadratic form that is similar to a spring. 

Their corresponding stiffness parameters are introduced. 

 Constitutive variable Strain energy Parameter 

Spring u (displacement) 
21

ku
2

 k (spring stiffness) 

Bar du dx  (axial strain) 
L

2

0

1
EA dx

2
  EA (axial stiffness) 

Beam 
2 2d v dx  (curvature) 

L
2

0

1
EI dx

2
  EI (bending stiffness) 
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Lecture 4 Direct stiffness method (Spring system) 

 4.1 Example 1  

Consider a system that consists of two springs in series subject to a force F as 

shown in Fig. 1 

 

Fig. 1 

The two springs has different stiffness denoted as k1 and k2. The question here is to 

find the equilibrium tip displacement. 

 Method 1: energy method 

 As before, we first try to use the energy method to solve this problem. The total 

potential energy is  

    
22

1 2 1 1 2 2 1 2

1 1
u ,u k u k u u Fu

2 2
       (1) 

Applying the principle of stationary potential energy, one has 

 

 
 

 
 

1 2

1 1 2 2 1

1

1 2

2 2 1

2

u ,u
k u k u u 0

u

u ,u
k u u F 0

u


   




   



  (2) 

Recast the linear system of equations in matrix form as 

 
1 2 2 1

2 2 2

k k k u 0

k k u F

      
          

  (3) 

Therefore, the displacement could be easily solved by inverting the stiffness matrix. 

Method 2: direct stiffness method 
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 By observation, it is a natural thought to partition the system into two springs 

since the two springs share similar elastic behavior except the stiffness value. 

Therefore, it will be convenient to first construct a representative spring element as 

shown in Fig. 2 and then apply this element when needed, just like a template. 

 

Fig. 2 

 For this representative spring element, one can also use the principal of stationary 

potential to obtain the equilibrium relationship between the nodal displacement (i.e., 

u1 and u2) and the nodal force (i.e., f1 and f2). 

    
2

1 2 2 1 1 1 2 2

1
u ,u k u u f u f u

2
       (4) 

Applying the principle of stationary potential energy, one has 

 

 
 

 
 

1 2

2 1 1

1

1 2

2 1 2

2

u ,u
k u u f 0

u

u ,u
k u u f 0

u


    




   



  (5) 

Recast the linear system of equations in matrix form as 

 
1 1

2 2

u fk k

u fk k

     
    

     
  (6) 

So far, we have obtained the stiffness matrix of a typical spring element. Next, let’s 

apply it to solve the problem according to the following steps. 

Step 1: Partition the spring system into pieces (elements), number the Elements 

and number the Nodes shown in Fig. 3. Herein, the first Capital letter means global 
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numbering in contrast to the elemental local numbering shown in Fig. 2) 

 

Fig. 3 

 Step 2: apply the template spring element stiffness relationship Eq. (6). 

For Element 1, one has 

 

 

 

 

 

1 1

1 1 1 1

1 1
1 1 2 2

k k u f

k k u f

    
    

        

  (7) 

 Similarly, for Element 2, one has 

 

 

 

 

 

2 2

2 2 1 1

2 2
2 2 2 2

k k u f

k k u f

    
    

        

  (8) 

Herein, the superscript 
(1)

 and 
(2)

 represent element numbers. Note that the local node 

2 of the Element 1 is just the local node 1 of the Element 2 (i.e., the Node 2 in the 

global numbering).  

 Step 3: By direct superposition of the local (elemental) stiffness matrices, one has 

the global system of equations in a matrix form as 

 

 

   

 

1

11 1 1 1

1 2

1 1 2 2 2 2 1 2

2
2 2 3 32

fk k 0 u f

k k k k u f f f

0 k k u ff

      
      

           
             

  (9) 

Step 4: apply the boundary conditions to modify the global equation Eq. (9). 

 Introducing the boundary condition 1u 0  into Eq.(9), one has the reduced 

global system of equations  
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2 21 2 2

3 32 2

u fk k k

u fk k

      
    

     
  (10) 

Step 5: apply the loadings to solve the global system of equations Eq. (10).  

 
21 2 2

32 2

uk k k 0

uk k F

      
         

  (11) 

Obviously, Eq. (11) is just the same as Eq. (3). This means that the two methods lead 

to the same results. It seems that the first method that has less analysis steps is better. 

However, for computers, the second method is of more advantage since they are good 

at doing repeating labor works once given a template. 

4.2 Example 2 

 Consider a system that consists of two springs in series subject to a known 

displacement   as shown in Fig. 4. 

 

Fig. 4 

The question here is to find the equilibrium displacement u and the reaction forces at 

both ends. 

Method 1: energy method 

 We first try to use the energy method to solve this problem. The total potential 

energy is  

    
22

1 2

1 1
u k u k u

2 2
      (12) 

Applying the principle of stationary potential energy, one has 
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 
 1 2

2

1 2

u
k u k u 0

u

k
u

k k


    










  (13) 

The magnitude of reaction forces at both ends are 

 

 
 

1 2
left 1

1 2

2 2

right 2

1 2

k k
F k u

k k

k 1 k
F k u

k k


 



 
   



  (14) 

Method 2: direct stiffness method 

 Just as the Steps 1-3 in Example 1, the difference is at the step 4 where boundary 

conditions are applied. We have in this example that 

 
21 2 2 2

32 2

fk k k u

fk k

      
          

  (15) 

And by applying loading, one has 

 
1 2 2 2

32 2

0k k k u

fk k

      
          

  (16) 

From Eq.(16), one can solve for  

 
 

2
2

1 2

2 2

right 3

1 2

k
u u

k k

k 1 k
F f

k k


 



 
 



  (17) 

and from Eq. (9), one has 

 1 2
left

1 2

k k
F

k k





  (18) 

Remarks: 

From Example 1 and Example 2, we introduce the direct stiffness method and 

compare it to the energy method. While the energy method is easy to apply when one 
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uses hands to do computation, the direct stiffness where discretization is introduced is 

more general and routine for computers. The procedure for the direct stiffness method 

is summarized as following: 

(1) Derive element stiffness matrix. 

(2) Discretize the system into elements. 

(3) Assemble element stiffness matrices to form system stiffness matrix. 

(4) Apply boundary conditions and loadings to form equations. 

(5) Solve equations. 

4.3 Example 3 

 By this example, we further show the solution procedure of direct stiffness 

method. This can be deemed as a prototype of the finite element method. 

 

Fig. 5 

Next, we consider the example shown in Fig. 5. 

Step 1: Partition the spring system into elements and do numbering shown in Fig. 

6. 
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Fig. 6 

Step 2: Derive element equations. 

For Element 1, one has 

 

 

 

 

 

1 1

1 1 1 1

1 1
1 1 2 2

k k u f

k k u f

    
    

        

  (19) 

For Element 2, one has 

 

 

 

 

 

2 2

2 2 1 1

2 2
2 2 2 2

k k u f

k k u f

    
    

        

  (20) 

For Element 3, one has 

 

 

 

 

 

3 3

3 3 1 1

3 3
3 3 2 2

k k u f

k k u f

    
    

        

  (21) 

For Element 4, one has 

 

 

 

 

 

4 4

4 4 1 1

4 4
4 4 2 2

k k u f

k k u f

    
    

        

  (22) 

Step 3: Assemble all element equations to form a global system of equations. 

 

1 1 1 1

1 1 2 3 2 3 2 2

2 3 2 3 4 4 3 3

4 4 4 4

k k 0 0 u f

k k k k k k 0 u f

0 k k k k k k u f

0 0 k k u f

     
     
    
     
         
     

     

  (23) 

Step 4: Apply boundary conditions 

 
1 2 3 2 3 2 2

2 3 2 3 4 3 3

k k k k k u f

k k k k k u f

        
     

        
  (24) 
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Step 5: Apply loadings and solve the equations 

 
1 2 3 2 3 2 1

2 3 2 3 4 3 2

k k k k k u F

k k k k k u F

        
     

        
  (25) 

Step 6: Once the displacement unknowns at Node 2 and Node 3 are solved for by 

Eq. (25), the magnitude of reaction forces at Node 1 and Node 4 could be evaluated 

by Eq. (23) 

 
1 1 2

4 4 3

f k u

f k u




  (26) 
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Lecture 5 Bar system 

 5.1 Stiffness matrix of a bar element in 1-D space 

 

Fig. 1 

 Consider the bar element as shown in Fig. 1. For this representative bar element, 

its total potential energy is  

  
2

L

1 1 2 2
0

1 du
u EA dx f u f u

2 dx

 
    

 
   (1) 

Since we are given the following conditions  

 
 

 

1 1 1

2 2 2

x 0,  u x u

x L,  u x u

 

 
  (2) 

a linear polynomial is adopted to approximate the displacement field 

     0 1u x u x c c x     (3) 

Introducing Eq.(2) into Eq. (3) gives rise to 

 
 

 
0 1 1

0 1 2

u 0 c c 0 u

u L c c L u

  


  
  (4) 

So, 

 
0 1

2 1
1

c u

u u
c

L






  (5) 

Plugging Eq. (5) back to Eq. (3), one has 

   2 1
1

u u
u x u x

L


    (6) 

Furthermore, Eq. (6) could be re-arranged in the following form 
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      1 2 1 1 2 2

L x x
u x u u N x u N x u

L L


      (7) 

where  1N x  and  2N x  are called shape functions of the bar element with 

respect to the degree of freedom 1u  and 2u , respectively. It can be shown that 

 
   

 
1 2

i j ij

N x N x 1

N x ,  i 1,2;  j 1,2

 

  
  (8) 

where   is the Kronecker delta defined as 

 ij

1,  if  i=j

0,  if  i j



 


  (9) 

So far, we can introduce Eq. (7) into Eq. (1) to obtain the approximated total 

potential energy 

  
2

L
1 2

1 2 1 2 1 1 2 2
0

dN dN1
u ,u EA u u dx f u f u

2 dx dx

 
     

 
   (10) 

and further apply the principle of stationary potential energy 

 

 

 

L
1 2 1 2 1

1 2 1
0

1

L
1 2 1 2 2

1 2 2
0

2

u ,u dN dN dN
EA u u dx f 0

u dx dx dx

u ,u dN dN dN
EA u u dx f 0

u dx dx dx

  
    

  

  
    

  





  (11) 

Recast the linear system of equations in matrix form as 

 

L L
1 1 2 1

0 0
1 1

L L
2 21 2 2 2

0 0

dN dN dN dN
EA dx EA dx

u fdx dx dx dx

u fdN dN dN dN
EA dx EA dx

dx dx dx dx

 
     

     
    

  

 

 

  (12) 

Evaluate the integrals 

 
1 1

2 2

u f1 1EA

u f1 1L

     
    

     
  (13) 

So far, we have obtained the stiffness matrix of a typical bar element. 

5.2 Stiffness matrix of a bar element in 2D space 



  Lecture 5 Bar system  Yanhui Jiang 

3 

 

 

Fig. 2 

 By coordinate transformation for the nodal displacement as shown in Fig. 2, one 

has the following relationship 

 

1 1 1

1 1 1

2 2 2

2 2 2

1 1

1 1

2 2

2 2

u cos u sin v

v sin u cos v

u cos u sin v

v sin u cos v

u uC S 0 0

v vS C 0 0

u u0 0 C S

v v0 0 S C

 

 

 

 

  
    


  
    



    
     
    
    

    
     

  (14) 

where C stands for cos  and S stands for sin . Similarly, for the nodal forces as 

shown in Fig. 3 
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Fig. 3 

one has the following relationship 

 

u1 u1 v1

v1 u1 v1

u2 u2 v2

v2 u2 v2

u1 u1

v1 v1

u2 u2

v2 v2

f cos f sin f

f sin f cos f

f cos f sin f

f sin f cos f

f fC S 0 0

f fS C 0 0

f f0 0 C S

f f0 0 S C

 

 

 

 

  
    


  
    



    
     
    
    

    
     

  (15) 

In addition, in the new coordinate system after rotation transformation, form Eq. 

(13), we know the stiffness matrix of a typical bar element could be recast as 

 

u11

v11

u22

v22

fu1 0 1 0

fv0 0 0 0EA

fu1 0 1 0L

fv0 0 0 0

    
    
    
    

   
     

  (16) 

By introducing Eq. (14) and Eq. (15) into Eq. (16), one has 

 

u11

v11

u22

v22

fu1 0 1 0 C S 0 0 C S 0 0

fv0 0 0 0 S C 0 0 S C 0 0EA

fu1 0 1 0 0 0 C S 0 0 C SL

fv0 0 0 0 0 0 S C 0 0 S C

        
       

 
       
       
       

         

  (17) 
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Note that  

 

T

4 4

C S 0 0 C S 0 0

S C 0 0 S C 0 0

0 0 C S 0 0 C S

0 0 S C 0 0 S C



   
   
 
    
   
   

    

I   (18) 

So,  

 

T

u11

v11

u22

v22

fuC S 0 0 1 0 1 0 C S 0 0

fvS C 0 0 0 0 0 0 S C 0 0EA

fu0 0 C S 1 0 1 0 0 0 C SL

fv0 0 S C 0 0 0 0 0 0 S C

        
       

 
        
       
       

          

  (19) 

Furthermore, one has the stiffness matrix for an inclined bar element in 2D space 

 

2 2
u11

2 2
v11

2 2
u22

2 2
v22

fuC CS C CS

fvCS S CS SEA

fuL C CS C CS

fvCS S CS S

     
    

      
     
    
      

  (20) 

5.3 Stress in a bar element in 2D space 

 According to the definition of stress 

 u2f

A



   (21) 

By Eq.(17), one has 

 

u1 1 1 1 1 2 2

v1 1 1

u2 2 2 1 1 2 2

v2 2 2

f Cu Sv1 0 1 0 Cu Sv Cu Sv

f Su Cv0 0 0 0 0EA EA

f Cu Sv1 0 1 0 Cu Sv Cu SvL L

f Su Cv0 0 0 0 0

          
        
       
          

      
       

  (22) 

Therefore, the stress could be evaluated as 

  1 1 2 2

E
Cu Sv Cu Sv

L
        (23) 

5.4 Bar system in 2D space 

 A bar system in 2D space is also called a plane truss.  

5.4.1 Example 1  
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Fig. 4 

 Consider the plane truss shown in Fig. 4. Find the nodal displacement and stress 

distribution. 

   Step 1: Loop elements to evaluate element stiffness matrices 

 Element 1: Calculate direction cosines 

 

0

C cos 1

S sin 0











 

 

  (24) 

Evaluate element stiffness matrix 

 

0 0

0 0 0 0EA

0 0

0

1 1

1

0

1L

0 0

 
 
 
 
 
 




  (25) 

   Element 2: Calculate direction cosines 

 

o90

C cos 0

S sin 1











 

 

  (26) 

Evaluate element stiffness matrix 
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0 0 0 0

0 0EA

0 0 0 0L

0

1 1

101

 







 
 

  

  (27) 

Element 3: Calculate direction cosines 

 

o45

C cos 2 2

S sin 2 2











 

 

  (28) 

Evaluate element stiffness matrix 

 

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2EA

1 2 1 2 1 2 1 2L

1 2 1 2 1 2 1 2

  
 

 
 
  
 
  

  (29) 

Step 2: Assemble element stiffness matrix directly and loading vectors to form 

system equations 

 

1

1

2

2

3

3

1 1

u1 2 1 2 0 1 2 1 2 0

v1 2 1 2 0 0 1 2 1 2 0

u0 0 0 0 0EA

v0 0 0 0 0L

u1 2 1

1

2 0 0 1 2 1 2 F

1

1 1

v1 2 1 2 0 2 1 2 01

1 1

       
    

 
    
    

    
    
     
    

       









  (30) 

Step 3: Apply boundary conditions to reduce the system of equations 

 Since we have known that at the boundaries 

 1 2 2v u v 0     (31) 

The reduced system of equations is 

 

1

3

3

3 2 1 2 1 2 u 0
EA

1 2 1 2 1 2 u F
L

1 2 1 2 3 2 v 0

      
     
 
     
          

  (32) 
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Step 4: Solve the system of equations 

 

1

3

3

u 1 1 0 0 FL EA

u 1 4 1 FL EA 4FL EA

v 0 1 1 0 FL EA

       
       

  
       
               

  (33) 

 Step 5: Compute the stress in each element 

Element 1: where C and S are computed in Step 1 correspondingly. 

  1 1 1 2 2

E F
Cu Sv Cu Sv

L A
          (34) 

Element 2: where C and S are computed in Step 1 correspondingly. 

  2 2 2 3 3

E F
Cu Sv Cu Sv

L A
          (35) 

Element 3: where C and S are computed in Step 1 correspondingly. 

  3 1 1 3 3

E 2F
Cu Sv Cu Sv

A2L
         (36) 

5.4.2 Example 2  

 

Fig. 5 

 Consider the plane truss shown in Fig. 5. Find the nodal displacement and stress 

distribution. 

Step 1: Loop elements to evaluate element stiffness matrices 
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Element 1: Calculate direction cosines 

 

o45

C cos 2 2

S sin 2 2











 

 

  (37) 

Evaluate element stiffness matrix 

 

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2EA

1 2 1 2 1 2 1 2L

1 2 1 2 1 2 1 2

  
 

 
 
  
 
  

  (38) 

   Element 2: Calculate direction cosines 

 

o90

C cos 0

S sin 1











 

 

  (39) 

Evaluate element stiffness matrix 

 

0 0 0 0

0 1 0 1EA

0 0 0 0L

0 1 0 1

 
 


 
 
 

 

  (40) 

Spring element: 

 
1 1

k
1 1

 
 
 

 (41) 

Step 2: Assemble element stiffness matrix directly and loading vectors to form 

system equations 
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1

1

2

2

3

3

u1 2 1 2 0 0 1 2 1 2 0

v1 2 1 2 0 0 1 2 1 2 0

u0 0 0 0 0 0 0EA

v0 0 0 0 0L

u1 2 1 2 0 0 1 2 kL EA 1 2 F

v1 2 1 2 0 1 2 1 2

1

1 1 0

1

      
    

 
    
    

    
    
      
    

        





  (42) 

Step 3: Apply boundary conditions to reduce the system of equations 

 Since we have known that at the boundaries 

 1 1 2 2u v u v 0      (43) 

The reduced system of equations is 

 
3

3

u3 2 1 2 FEA

v1 2 3 2 0L

    
    

    
  (44) 

Step 4: Solve the system of equations 

 
3

3

u 0.75 0.25 FL EA 3FL 4EA

v 0.25 0.75 0 FL 4EA

       
        

       
  (45) 

 Step 5: Compute the stress in each element 

Element 1: where C and S are computed in Step 1 correspondingly. 

  1 1 1 3 3

E
Cu Sv Cu Sv

2L
        (46) 

Element 2: where C and S are computed in Step 1 correspondingly. 

  2 2 2 3 3

E
Cu Sv Cu Sv

L
        (47) 
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Lecture 6 Beam system 

 6.1 Stiffness matrix of a (Euler) beam element in 2-D space 

 

Fig. 1 

 Consider the beam element as shown in Fig. 1. For this representative beam 

element, its total potential energy is  

  
2

2
L

v1 1 v2 2 1 1 2 220

1 d v
u EI dx f v f v M M

2 dx
 

 
      

 
   (1) 

Since we are given the following conditions  

 

 

 

 

 

1 1 1

1 1 1

2 2 2

2 2 2

x 0,  v x v

dv
x 0,  x

dx

x L,  v x v

dv
x L,  x

dx





 

 

 

 

  (2) 

a cubic polynomial is adopted to approximate the displacement field 

     2 3

0 1 2 3v x v x c c x c x c x       (3) 

Introducing Eq.(2) into Eq. (3) gives rise to 

 

 

 

 

 

0 1 2 3 1

1 2 3 1

2 3

0 1 2 3 2

2

1 2 3 2

v 0 c c 0 c 0 c 0 v

dv dx 0 c c 0 c 0

v L c c L c L c L v

dv dx L c 2c L 3c L





    


   


    
    

  (4) 
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So, 

 

   
 

   
 

0 1

1 1

2 3
2 2 1 1

2
3 2 1

2 12 3 1 2
2 2 1 1 2 14 2

2 12 2 1
3 2 1 2 1 14 2 3

c v

c

c v v LL L

c2L 3L

3 v v 21
c v v L 3L L

L L L

2 v v1
c L v v L 2L

L L L





 

 
  

 
  







      
     

   



 
        


        

  (5) 

Plugging Eq. (5) back to Eq. (3), one has 

  
   2 1 2 12 31 2 2 1

1 1 2 2 3

3 v v 2 v v2
u x v x x x

L L L L

   


     
        

   
  (6) 

Furthermore, Eq. (6) could be re-arranged in the following form 

 

 

       

2 3 2 3

1 12 3 2

2 3 2 3

2 22 3 2

1 1 2 1 3 2 4 2

3x 2x 2x x
v x 1 v x

L L L L

3x 2x x x
v

L L L L

N x v N x N x v N x





 

   
        
   

   
       
   

   

  (7) 

where  1N x ,  2N x ,  3N x  and  4N x  are called shape functions of the 

beam element with respect to the degree of freedom 1v , 1 , 2v  and 2 , 

respectively. 

 Evaluate the derivatives of Eq. (7) 

 

 
2 2

1 12 3 2

2 2

2 22 3 2

dv 6x 6x 4x 3x
x v 1

dx L L L L

6x 6x 2x 3x
v

L L L L





   
        
   

   
       
   

  (8) 

and 
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 
2

1 12 2 3 2

2 22 3 2

d v 6 12x 4 6x
x v

dx L L L L

6 12x 2 6x
v

L L L L





   
        
   

   
       
   

  (9) 

Introduce Eq. (9) into Eq. (1) to obtain the approximated total potential energy 

 

 
2

2
L

1 1 2 2 v1 1 v2 2 1 1 2 220

2

1 12 3 2
L

0

2 22 3 2

v1 1 v2 2 1 1 2 2

1 d v
v , , v , EI dx f v f v M M

2 dx

6 12x 4 6x
v

L L L L1
EI dx

2 6 12x 2 6x
v

L L L L

f v f v M M

   





 

 
      

 

    
        
    
    
        
    

   



   (10) 

Apply the principle of stationary potential energy 

 

1 12 3 2
L

v12 30
1

2 22 3 2

1 12 3 2

1

2 22 3 2

6 12x 4 6x
v

L L L L 6 12x
EI dx f 0

v L L6 12x 2 6x
v

L L L L

6 12x 4 6x
v

L L L L
EI

6 12x 2 6x
v

L L L L










    
        

            
      
        
    

   
       

    
    
       
   



L

120

1 12 3 2
L

v22 30
2

2 22 3 2

1 12 3 2

2

2 3

4 6x
dx M 0

L L

6 12x 4 6x
v

L L L L 6 12x
EI dx f 0

v L L6 12x 2 6x
v

L L L L

6 12x 4 6x
v

L L L L
EI

6 12x

L L











      
  

 


    
        

           
      
        
    

   
       

    



 





L

220

2 22

2 6x
dx M 0

L L2 6x
v

L L


 
 

       
      

      
    


  (11) 

Evaluate the integrals and recast the equations in matrix form 

 

1 v1

2 2

1 1

3

2 v2

2 2

2 2

v f12 6L 12 6L

M6L 4L 6L 2LEI

v f12 6L 12 6LL

M6L 2L 6L 4L





     
    


     
      
    

     

  (12) 
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So far, we have obtained the stiffness matrix of a typical beam element. 

6.2 Equivalent nodal force/moment for distributed loads 

For an arbitrary distributed force on the beam, its equivalent nodal force/moment 

could be evaluated by work equivalent 

    
L

v1 1 v2 2 1 1 2 2
0

v x w x dx f v f v M M       (13) 

where we use the approximated displacement field from Eq. (7). For example,  

 

Fig. 2 

As shown in Fig. 2, we consider a constant distributed load. Its nodal equivalent 

force is determined as 

 

 
2 3 2 3

L L L

1 12 3 20 0 0

2 3 2 3
L L

2 22 3 20 0

3x 2x 2x x
v x wdx w 1 dx v w x dx

L L L L

3x 2x x x
w dx v w dx

L L L L





   
        
   

   
       
   

  

 

  (14) 

Therefore,  
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2 3
L

v1 2 30

2 3 2
L

1 20

2 3
L

v2 2 30

2 3 2
L

2 20

3x 2x wL
f w 1 dx

L L 2

2x x wL
M w x dx

L L 12

3x 2x wL
f w dx

L L 2

x x wL
M w dx

L L 12

   

   

  

    









  (15) 

6.3 Stiffness matrix of an inclined beam element in 2-D space  

 

Fig. 3 

 By coordinate transformation for the nodal displacement as shown in Fig. 3, one 

has the following relationship 
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1 1 1

1 1 1

1 1

2 2 2

2 2 2

2 2

1 1

1 1

1

2 2

2 2

2 2

u cos u sin v

v sin u cos v

u cos u sin v

v sin u cos v

u uC S 0 0 0 0

v vS C 0 0 0 0

0 0 1 0 0 0

u u0 0 0 C S 0

v v0 0 0 S C 0

0 0 0 0 0 1

 

 

 

 

 

 

 

 

  
    


 


  
    


 



   
    
   
   
   

   
    
   
    

1

1

1

6 6

2

2

2

u

v

u

v







   
   
   
   

    
   
   
   
      

T

  (16) 

where C stands for cos  and S stands for sin . Similarly, for the nodal forces as 

shown in Fig. 4 

 

Fig. 4 

one has the following relationship 
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u1 u1 v1

v1 u1 v1

1 1

u2 u2 v2

v2 u2 v2

2 2

u1

v1

1

u2

v2

2

f cos f sin f

f sin f cos f

M M

f cos f sin f

f sin f cos f

M M

f C S 0 0 0 0

f S C 0 0 0 0

M 0 0 1 0 0 0

f 0 0 0 C S 0

f 0 0 0 S C 0

M 0 0 0 0 0 1

 

 

 

 

  
    


 


  
    


 



   
    
   

  
  

  
   
  

    

u1 u1

v1 v1

1 1

6 6

u2 u2

v2 v2

2 2

f f

f f

M M

f f

f f

M M



   
   
   
   

    
   
   
   
      

T

  (17) 

In addition, in the new coordinate system after rotation transformation, form Eq. 

(12), we know the stiffness matrix of a typical beam element could be recast as 

 

1 u1

1 v1

2 2

1 1

3

2 u2

2 v2

2 2

2 2

u f0 0 0 0 0 0

v f0 12 6L 0 12 6L

M0 6L 4L 0 6L 2LEI

u f0 0 0 0 0 0L

v f0 12 6L 0 12 6L

M0 6L 2L 0 6L 4L





     
      
    
     
    

     
       
    
          

  (18) 

By introducing Eq. (16) and Eq. (17) into Eq. (18), one has 

 

1 u1

1 v1

2 2

1 1

6 6 6 63

2 u2

2 v2

2 2

2 2

u f0 0 0 0 0 0

v f0 12 6L 0 12 6L

M0 6L 4L 0 6L 2LEI

u f0 0 0 0 0 0L

v f0 12 6L 0 12 6L

M0 6L 2L 0 6L 4L





 

    
    


    
    

       
    
      
    

         

T T   (19) 

Note that  

 T

6 6 6 6 6 6   T T I   (20) 

So,  
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1 u1

1 v1

2 2

1 1T

6 6 6 63

2 u2

2 v2

2 2

2 2

u f0 0 0 0 0 0

v f0 12 6L 0 12 6L

M0 6L 4L 0 6L 2LEI

u f0 0 0 0 0 0L

v f0 12 6L 0 12 6L

M0 6L 2L 0 6L 4L





 

    
    


    
    

      
    
      
    

         

T T   (21) 

Furthermore, one has the stiffness matrix for an inclined beam element in 2D space 

 

2 2
1 u1

2 2
1 v1

2 2
1 1

3 2
2 u2

2
2 v2

2
2 2

u f12S 12SC 6LS 12S 12SC 6LS

v f12C 6LC 12SC 12C 6LC

M4L 6LS 6LC 2LEI

u fL 12S 12SC 6LS

v f12C 6LS

MSym 4L





        
     

     
     

     
     

     
     

         

  (22) 

where ‘Sym’ means symmetry about the diagonal. 

6.4 Stiffness matrix of an inclined column-beam element in 2-D space 

If we take the bar element and beam element together into consideration, then in 

the rotated coordinate system, one has 

 

1 1 1 u1

2 2 2 2 1 v1

2 2

2 2 2 2 1 1

1 1 2 u2

2 2 2 2 2 v2

2 2

2 2 2 2 2 2

C 0 0 C 0 0 u f

0 12C 6LC 0 12C 6LC v f

0 6LC 4L C 0 6LC 2L C M

C 0 0 C 0 0 u f

0 12C 6LC 0 12C 6LC v f

0 6LC 2L C 0 6LC 4L C M





      
      
     

      
     

      
        
     

          

  (23) 

where 

 1 2 3

EA EI
C ,   C

L L
    (24) 

By using transformation relationships Eq. (16) and Eq. (17), one has 
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1 1 1 u1

2 2 2 2 1 v1

2 2

2 2 2 2 1 1T

6 6 6 6

1 1 2 u2

2 2 2 2 2 v2

2 2

2 2 2 2 2 2

C 0 0 C 0 0 u f

0 12C 6LC 0 12C 6LC v f

0 6LC 4L C 0 6LC 2L C M

C 0 0 C 0 0 u f

0 12C 6LC 0 12C 6LC v f

0 6LC 2L C 0 6LC 4L C M





 

     
     


     
     
       
     
       
     

          

T T   (25) 

After evaluating the matrix multiplications, one has the stiffness matrix for an 

inclined column-beam element in 2D space 

2 2 2 2

2 2 2 2

2 2 2 2

2 2 2

2 2

2 2

2 2

2

12I 12I 6I 12I 12I 6I
AC S A CS S AC S A CS S

L L L L L L

12I 6I 12I 12I 6I
AS C C A CS AS C C

L L L L L

6I 6I
E 4I S C 2I

L L
L

12I 12I 6I
AC S A CS S

L L L

12I 6I
AS C C

L L

Sym 4I

      
            

     
    

        
   





  

  
 

 














 
 
 
 
 



  (26) 

where ‘Sym’ means symmetry about the diagonal. 

MATLAB code 

syms C S L E A I 

T=[C S 0 0 0 0; 

   -S C 0 0 0 0; 

   0 0 1 0 0 0; 

   0 0 0 C S 0; 

   0 0 0 -S C 0; 

   0 0 0 0 0 1]; 

TT=transpose(T); 

K=[0 0 0 0 0 0; 

   0 12 6*L 0 -12 6*L; 

   0 6*L 4*L^2 0 -6*L 2*L^2; 

   0 0 0 0 0 0; 

   0 -12 -6*L 0 12 -6*L; 

   0 6*L 2*L^2 0 -6*L 4*L^2]; 

K=E*I/L^3*K; 

K(1,1)=E*A/L; 

K(4,4)=E*A/L; 
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K(1,4)=-E*A/L; 

K(4,1)=-E*A/L; 

K_new=TT*K*T 

6.5 Beam system in 2D space 

 A beam system in 2D space is also called a plane frame.  

6.5.1 Example 1  

 

Fig. 5 

 Consider the plane frame shown in Fig. 5. Find the nodal displacements and 

slopes 

   Step 1: Loop elements 

 Element 1:  

 

 

 

 

 

 

 

2

1 1
1 v1

)

2 1 (1)

1 1

3 1 1

2 v

2

2

(11
2

2

2

v f

ME

12 6L 12 6L

6L 4L 6L 2L

12 6L 12 6L

6L 2L 6 ML 4L

I

L v f





    
    
         
    
    





  


  

  (27) 

   Element 2:  

 

 

 

 

 

 

 

2

2 2
1 v1

)

2 2 (2)

1 1

3 2 2

2 v

2

2

(22
2

2

2

v f

ME

12 6L 12 6L

6L 4L 6L 2L

12 6L 12 6L

6L 2L 6 ML 4L

I

L v f





    
    
         
    
    





  


  

  (28) 

Step 2: Assemble element stiffness matrix directly and loading vectors to form 

system equations 
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2

1

1

2

2

3

2

2

2 2 2

2 2

3

3

v0 0 0

0 0 0

v 0EI

0L

v0 0 F

0 0

12 6L 12 6L

6L 4L 6L 2L

12 6L 1

2

2 6L

6L 2L 6

1

12 6L 12 6L

6L 4

L 0

L 6L 2L

12 6L 6L

6L 2 6L 4

L 4L

L







    
    
    
     

 







  

  
      

    
   
    





 









  (29) 

Step 3: Apply boundary conditions to reduce the system of equations 

 Since we have known that at the boundaries 

 1 1 2v v 0     (30) 

The reduced system of equations is 

 

2 2

2

33

2 2

3

8L 6L 2L 0
EI

6L 12 6L v F
L

2L 6L 4L 0





     
     
        
          

  (31) 

Step 4: Solve the system of equations 

 

2

2 2

2 3 3

3

23

2 2

L F1 1 1

4EI4L 4L 4L 0
L 1 7 3 7L F

v F
EI 4L 12 4L 12EI

0
1 3 5 3L F

4L 4L 4L 4EI





     
     
             
        
        

  (32) 

MATLAB code 

syms L 

K=[8*L^2, -6*L, 2*L^2; 

    -6*L,   12,  -6*L; 

   2*L^2, -6*L, 4*L^2]; 

inv(K) 

6.5.2 Example 2  
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Fig. 6 

 Consider the plane truss shown in Fig. 6. Find the nodal displacement and stress 

distribution. 

Step 1: Loop elements 

 Element 1:  

 

 

 

 

 

 

 

2

1 1
1 v1

)

2 1 (1)

1 1

3 1 1

2 v

2

2

(11
2

2

2

v f

ME

12 6L 12 6L

6L 4L 6L 2L

12 6L 12 6L

6L 2L 6 ML 4L

I

L v f





    
    
         
    
    





  


  

  (33) 

   Element 2:  

 

 

 

 

 

 

 

2

2 2
1 v1

)

2 2 (2)

1 1

3 2 2

2 v

2

2

(22
2

2

2

v f

ME

12 6L 12 6L

6L 4L 6L 2L

12 6L 12 6L

6L 2L 6 ML 4L

I

L v f





    
    
         
    
    





  


  

  (34) 

Spring element: 

 

 

 

3(3)
v11

(3) 3
2 v2

fv
k

1 1

1 v f1

   
    

   



  

  (35) 

Step 2: Assemble element stiffness matrix directly and loading vectors to form 

system equations 



  Lecture 6 Beam system  Yanhui Jiang 

13 

 

 2

1

1

2

2

2 2

2 2

2

2

3

3

3

2

4

v0 0 0 0

0 0 0 0

v0 0
E

12 6L 12 6L

6L 4L 6L 2L

0

12 6L 12 6L

6L 4

F

L 6L 2L

12 6

4

1 1

0

12 6L 12 6L

6L 2L 6L

L

L 12 6L

6 2L 6L

0

4
I

0 0
L

v0 0

0 0 0

v0 0 0 0

L

1

L

1







    
    
    
     
    

     
    
   
   








 

  
  













 

 





  (36) 

Step 3: Apply boundary conditions to reduce the system of equations 

 Since we have known that at the boundaries 

 1 1 2 4v v v 0      (37) 

The reduced system of equations is 

 

2 2

2

33

2 2

3

8L 6L 2L 0
EI

6L 13 6L v F
L

2L 6L 4L 0





     
     
        
          

  (38) 

Step 4: Solve the system of equations 

 

2

2 2

2 3 3

3

23

2 2

3L F4 3 5

19EI19L 19L 38L 0
L 3 7 9 7L F

v F
EI 19L 19 19L 19EI

0
5 9 17 9L F

38L 19L 19L 19EI





     
     
             
        
        

  (39) 

MATLAB code 

syms L 

K=[8*L^2, -6*L, 2*L^2; 

    -6*L,   13,  -6*L; 

   2*L^2, -6*L, 4*L^2]; 

inv(K) 
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Lecture 7 Linear elasticity 

In the previous lectures, we have learnt the basic idea about the finite element 

method in terms of the spring system, bar system, and beam system. We see that there 

is a standard procedure to derive the element stiffness matrix based on energy method 

and a standard procedure to discretize and assemble the system of interest. The spring 

element, the bar element, and the beam element introduced there are all called 

structural elements, where simplified kinematic models are assumed for solids with 

special shapes. From this lecture on, we will learn continuum elements for solids 

with arbitrary shapes. Since Hooke’s linear elastic model is the simplest material 

model for a continuum solid, in this lecture, we will talk about it first. 

7.1 Global coordinate system 

A global coordinate system is required to record the position of a particle, or the 

configuration of a body in a finite element analysis. For example, in a 3D space, a 

rectangular Cartesian coordinate is usually built by defining three orthogonal basis 

vectors and a fixed origin 

 1 2 3

1 0 0
0 , 1 , 0
0 0 1

     
     = = =     
          

e e e   (1) 

7.2 Displacement field 

 When a body is subject to external forces, the particle inside the body would 

move in a translational or rotational manner to occupy a new position. If we denote 

the initial position of the particle as 

1 
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1

2

3

X
X
X

 
 =  
  

X   (2) 

and the current position as 

 
1

2

3

x
x
x

 
 =  
  

x   (3) 

Then, the displacement of the particle is denoted as  

 
1

2

3

u
u
u

 
 = − =  
  

u x X   (4) 

For all the particles in the body, a displacement field is formed with respect to the 

initial configuration 0Ω  of the body. 

 ( ) 0ˆ ,   = ∈Ωu u X X   (5) 

In addition, the current configuration that comprises the deformed positions of all the 

particles is denoted by tΩ . 

7.3 (Small/Engineering) strain field 

 For a differential line dX  in the initial configuration, it deforms to a differential 

line dx  in the current configuration. Then, the deformation of the differential line 

could be described by the displacement gradient 

 ( )d d d d∂ ∂ = = + = +∇ ∂ ∂ 
x ux X I X I u X
X X

  (6) 

where the gradient of the displacement field is defined as 

2 
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1 1 1

1 2 3

2 2 2

1 2 3

3 3 3

1 2 3

u u u
X X X
u u u
X X X
u u u
X X X

 ∂ ∂ ∂
 ∂ ∂ ∂ 
 ∂ ∂ ∂∂

∇ = =  ∂ ∂ ∂ ∂ 
 ∂ ∂ ∂
 
∂ ∂ ∂ 

uu
X

  (7) 

Note that ∂∗
∇∗ =

∂X
 is defined in the initial configuration. 

The arc-length or the norm of the differential line in the current configuration is 

 

( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( )

TT T

T TT

T T T

2 T

T

T

T

T

T

T

T

T T

d d d d d d

dL d d d d

dL 1

dl d d d d d

dl d d

dl

dl

dl d d d d

= = = +∇ +∇

⇒

 = +∇ + ∇ + ∇ ∇
 

⇒

= + + ∇ + ∇
 

 ∇ + ∇
 

 + +

∇ ∇

∇ ∇

∇

⇒

= +

∇


∇


+

⇒

= + ∇ n

x x x X I u I u X

X I u u u u

Xu u

u

X X X X X

X X X Xu

u u

u u

u

n un n u

X

u

  (8) 

where Ld dd= =X X n n , n  is the unit vector along the direction of dX . 

In this course, we assume the norm of the gradient of the displacement field is a 

small value, i.e., 

 3d
max max 1,   d

d
∇ ⋅

∇ = = ∇ ⋅ ∀ ∈
u X

u u n X
X

    (9) 

Thus, the 2nd order and higher order terms in Eq. (8) could be neglected 

3 
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( )

( )

( )

T

T

T

n

T

T

T
dl

d

dL 1 d d

dL 1

l

d d

dL d d
dL

2
l

d
2

ε

 ∇ + ∇
 

 ∇ + ∇
 

≈ +

⇒

 
 ≈ + 
 
 

⇒

−
= =

 ∇ + ∇
 

n n

n

n

u u

n

u u

u

n

u

  (10) 

From Eq. (10), one could evaluate the strain nε  along an arbitrary direction n  

when a small strain field is introduced as 

 

( )

31 1 2 1

1 2 1 3 1

31 2 2 2

2 1 2 3 2

3 3 31 2

3 1 3 2 3

11 12 13

21 22 23

31

T

uu u u u1 1
X 2 X X 2 X X

uu u u u1 1
2 X X X 2 X X

u u uu u1 1
2 X X 2 X X

2

X

=

    ∂∂ ∂ ∂ ∂
+ +   ∂ ∂ ∂ ∂ ∂    

    ∂∂ ∂ ∂ ∂ = + +   ∂ ∂ ∂ ∂ ∂   
 

   ∂ ∂ ∂∂ ∂ + +    ∂ ∂ ∂ ∂ ∂   





ε

 ∇ + ∇


ε ε ε
= ε ε

ε

u
ε

u

32 33

 
 
 
 ε ε 

  (11) 

We notice that ε  is symmetric. A standard eigenvalue analysis could be 

performed to find its principal strains ελ  and corresponding principal directions εn .  

 ε ε ε⋅ = λε n n   (12) 

In addition, there are only six independent components. So, for convenience of 

computation, a strain vector is usually introduced as  

4 
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1

1

2

1 11 2

2 22 3

33 33

12 12 1 2

2 113 13

3123 23

3 1

32

3 2

u
X
u
X
u
X

2 u u
X X2

uu2
X X

uu
X X

∂ 
 ∂ 

∂ 
 ε ε ∂        ε ε  ∂         ∂ε ε  = = =     γ ε ∂ ∂    +     ∂ ∂γ ε       ∂∂γ ε       + 
∂ ∂ 
 ∂∂

+ 
∂ ∂  

ε







   (13) 

where 1ε , 2ε  and 3ε  are called direct components of the strain vector and 12γ , 

13γ  and 23γ  are shear components of the strain vector. 

 In linear elasticity, the small/engineering strain defined in the initial configuration 

is adopted as the strain measure.  

7.4 (Cauchy) stress field 

 We already know the definition of stress for 1D case, i.e., force per unit area. 

Herein, we generalize the definition to 3D case. 

 In the current configuration, consider a differential surface whose area is denoted 

as da and whose unit normal direction is denoted as  

 
1

2

3

n
n
n

 
 =  
  

n   (14) 

Note that 2 2 2
1 2 3n n n 1= + + =n . The differential surface in 3D space is therefore 

defined as 

 da=S n   (15) 

Consider a traction (i.e., force per the differential area) that is imposed on the 

5 
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differential surface 

 
1

2

3

t
t
t

 
 =  
  

t   (16) 

The force in 3D space is therefore defined as 

 da=F t   (17) 

We define stress for the 3D case as 

 =
Fσ
S

  (18) 

Then, a relationship between the traction and the unit normal direction could be 

derived as 

 = ⋅t σ n   (19) 

It is apparent that stress could be written in a matrix form as 

 
11 12 13

21 22 23

31 32 33

σ σ σ 
 = σ σ σ 
 σ σ σ 

σ   (20) 

 Consider a body that is subject to surface traction in the current configuration.  

(1) Force balance requires that 

 

t

t

t

da 0

da 0

dv 0

0

∂Ω

∂Ω

Ω

=

⇒

⋅ =

⋅∇

⇒

⋅∇ =

⇒
=

∫

∫

∫

t

σ

σ n

σ

  (21) 

Note that ∂∗
∇∗ =

∂x
 is defined in the current configuration. 

(2) Moment balance requires that 

6 
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( )

t

t

t

t t

32 23

13 31

21 12

32 23

13 31

21 12

T

da 0

da 0

dv 0

dv dv 0

0
0
0

∂Ω

∂Ω

Ω

Ω Ω

× =

⇒

× ⋅ =

⇒

× ⋅∇ =

⇒

σ −σ 
 σ −σ + × = 
 σ −σ 

⇒
σ −σ =
σ −σ =
σ −

∇

σ

=

⋅

=
⇒

∫

∫

∫

∫ ∫

x t

x σ n

x σ

x

σ σ

σ

  (22) 

From Eq. (22), we know that the stress matrix is symmetric. Similar to the eigenvalue 

analysis of a strain matrix, a standard eigenvalue analysis could be performed as 

following 

 σ σ σ⋅ = λσ n n   (23) 

where σλ  and σn  denote a principal stresses and its corresponding principal 

direction, respectively. 

In practice, for convenience of computation, a stress vector is usually introduced 

as 

 

1 11

2 22

3 33

12 12

13 13

23 23

σ σ   
   σ σ   
   σ σ

= =   τ σ   
   τ σ
   
τ σ      

σ







   (24) 

where 1σ , 2σ  and 3σ  are called the direct components of the stress vector and 
7 
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12τ , 13τ  and 23τ  are the shear components of the stress vector. 

In linear elasticity, the Cauchy stress that defined in the current configuration is 

adopted as the stress measure. Nevertheless, when the small strain assumption holds, 

it is applicable. 

7.5 Hooke’s law (Linear elasticity) 

The Hooke’s law defines a linear relationship between the stress components and 

strain components for an isotropic linear elastic material. 

 

31 2
1

32 1
2

3 1 2
3

12 12

13 13

23 23

E E E

E E E

E E E
1
G
1
G
1
G

σσ σ
ε = −ν −ν

σσ σ
ε = −ν −ν

σ σ σ
ε = −ν −ν

γ = τ

γ = τ

γ = τ

 



 



  



  (25) 

where E  is called Young’s modulus, ν  is called Poisson’s ratio, and G  is called 

shear modulus defined as  

 EG
2(1 )

=
+ ν

  (26) 

They are all material parameters. It could be written in the matrix form as 
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1 0 0 0
E E E

1 0 0 0
E E E

1 0 0 0
E E E

10 0 0 0 0
G

10 0 0 0 0
G

10 0 0 0 0
G

ν ν − − 
 

ν ν − − 
 ν ν − −
 = = 
 
 
 
 
 
 
  

ε σ Cσ     (27) 

where C  is called compliance matrix, which is symmetric and positive definite. 

Alternatively, from Eq. (27), one has 

 =σ Dε    (28) 

where 1−=D C  is called stiffness matrix, which is also symmetric. 

 

2 0 0 0
2 0 0 0

2 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

µ + λ λ λ 
 λ µ + λ λ 
 λ λ µ + λ

=  µ 
 µ
 

µ 

D   (29) 

where µ  and λ  are called Lame constants. 

 

( )( )

E G
2(1 )

E
1 1 2

µ = =
+ ν

ν
λ =

+ ν − ν

  (30) 

7.6 Total potential energy of a linear elastic body 

 The strain energy density for a Hooke material is introduced as 

 T T1 1W
2 2

= =ε σ ε Dε      (31) 

The internal energy of the body is written as 
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0 0

T
int

1WdV dV
2WW

Π = =∫ ∫ ε Dε    (32) 

The external energy of the body is written as 

 
0 0

T T
ext dA dV

∂Ω Ω
Π = +∫ ∫u t u f   (33) 

where t  is the surface traction vector and f  is the body force vector. 

So, the total potential energy is written as 

 
( ) ( ) ( )

0 0 0

int ext

T T T1 dV dA dV
2Ω ∂Ω Ω

Π = Π −Π

= − −∫ ∫ ∫

u u u

ε Dε u t u f 

  (34) 

Applying the principle of stationary potential energy, one has 

 ( )[ ]
0 0 0

T T TdV dA dV 0d d d d d
Ω ∂Ω Ω

Π = − − =∫ ∫ ∫u u ε Dε u t u f    (35) 

 

 

Appendix 

Method 1 

 

( ) ( )

( )

( ) ( ) ( )

j j kl k l m
m

ijk j kl i,l

ijk j i ijk j,l kl i

ijk jl kl i

ijk kj i

32 23 1 13 31 2 21 12 3

kl,l

x
x

x

x x

∂
× ⋅∇ = ×σ ⊗ ⋅

∂

= ε σ

= ε + ε σ

= ε δ σ

= ε σ

= σ −σ + σ −σ + σ

σ

−σ

x σ εεεε  

ε

εε
ε

ε

εεε 

  

Method 2 
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( )
1

3 2 11 12 13

3 1 21 22 23
2

2 1 31 32 33

3

21 3 31 2 22 3 32 2 23 3 33 2

11 3 31 1 12 3 32 1 13 3 33 1

11 2 21 1 12 2

x0 x x
x 0 x

x
x x 0

x

x x x x x x
x x x x x x
x x x

 ∂
 ∂  − σ σ σ    
 ∂    × ⋅∇ = − σ σ σ       ∂     − σ σ σ      ∂
 
∂ 

−σ +σ −σ +σ −σ +σ
= σ −σ σ −σ σ −σ

−σ +σ −σ +

x σ

1

2
22 1 13 2 23 1

3

21,1 3 31,1 2 22,2 3 32,2 2 32 23,3 3 23 33,3 2

11,1 3 31,1 1 31 12,2 3 32,2 1 13,3 3 13 33,3 1

11,1 2 21,1 1 21 12,2 2 1

x

x
x x x

x

x x x x x x
x x x x x x
x x x

 ∂
 ∂  
 ∂ 
   ∂  σ −σ +σ   ∂
 
∂ 

−σ +σ −σ +σ +σ −σ −σ +σ
= σ −σ −σ +σ −σ +σ +σ −σ

−σ +σ +σ −σ −σ 2 22,2 1 13,3 2 23,3 1

21,1 3 22,2 3 23,3 3 31,1 2 32,2 2 33,3 2

31,1 1 32,2 1 33,3 1 11,1 3 12,2 3 13,3 3

11,1 2 12,2 2 13,3 2 21,1 1 22,2 1 23,3 1

x x x

x x x x x x
x x x x x x
x x x x x x

 
 
 
 + σ −σ +σ 
   −σ −σ −σ σ +σ +σ σ
   = −σ −σ −σ + σ +σ +σ +   
   −σ −σ −σ σ +σ +σ   

32 23

13 31

21 12

−σ 
 σ −σ 
 σ −σ 
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Lecture 8 2D plane stress/strain 

8.1 Basic notions 

Definition-1 Plane stress 

Plane stress is a stress state where the direct component and shear components 

normal to a plane are all zero. For example, for a plane expanded by { }1 2,e e  and its 

normal direction 3e , the plane stress assumption means 

 

1 1

2 2

3

12 12

13

23

0

0
0

σ σ   
   σ σ   
   σ

= =   τ τ   
   τ
   
τ    

σ

 

 



   (1) 

Definition-2 Plane strain 

Plane strain is a strain state where the direct component and shear components 

normal to a plane are all zero. For example, for a plane expanded by { }1 2,e e  and its 

normal direction 3e , the plane strain assumption means 

 

1 1

2 2

3

12 12

13

23

0

0
0

ε ε   
   ε ε   
   ε

= =   γ γ   
   γ
   
γ    

ε

 

 



   (2) 

8.2 Hooke’s law for plane stress 

 We introduce the plane stress assumption into the Hooke’s law by the compliance 

matrix form. 
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1

2

12

1 0 0 0
E E E

1 0 0 0
E E E

1 0 0 0
E E E

10 0 0 0 0

0
G

10 0 0 0 0
G

10 0 0 0 0
G

0

0

ν ν − − 
 

ν ν − − σ  
   σν ν   − −   =    τ  
  
  
  

 
 
  

ε





   (3) 

Therefore, we have 

 

( )

1 1

2 2

12 12

13 2

1 0
E E

1 0
E E

10 0
G

E

ν − 
ε σ    

ν    ε = − σ    
   γ τ    



σε


  

ν
= − +σ













  (4) 

Moreover, the inverse of the compliance matrix in Eq. (4) is  

 
1 1

2 22

12 12

1 0
E 1 0

1
10 0

2

 
 σ ν ε   
    σ = ν ε    − ν     τ − ν γ    
 



   (5) 

8.3 Hooke’s law for plane strain 

We introduce the plane strain assumption into the Hooke’s law by the stiffness 

matrix form. 
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1

2

12

2 0 0 0
2 0 0 0

2 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0

0

0
00

µ + λ λ λ ε   
   λ µ + λ λ ε   
   λ λ µ + λ

=    µ γ   
   µ
   

µ   

σ





   (6) 

Therefore, we have 

 

( )

1 1

2 2

12 12

1 23

2 0
2 0

0 0

σ µ + λ λ ε     
     σ = λ µ + λ ε     
     τ µ γ     

ε +σ = λ ε













  (7) 

Note that 

 

( )
( )( )

( )( )

E 1
2

1 1 2
E

1 1 2

−ν
µ + λ =

+ ν − ν

ν
λ =

+ ν − ν

  (8) 

Introducing Eq. (8) into Eq. (7), one has 

 
( )( )

1 1

2 2

12 12

1 0
E 1 0

1 1 2
1 20 0

2

 
 σ −ν ν ε   
    σ = ν −ν ε    + ν − ν     τ − ν γ    
 



   (9) 

8.4 Total potential energy and variational form 

 We denote the displacement vector, strain vector and stress vector at a material 

point in a 2D plane stress/strain linear elastic problem as 

 

1

1
1 1

1 2
2 2

2 2
12 12

1 2

2 1

u
X

u u,  ,  
u X

u u
X X

 ∂
 ∂ ε σ   
   ∂   = = ε = = σ =      ∂      γ τ    ∂ ∂

+ 
∂ ∂ 

u ε σ Dε
 

      (10) 

For the plane stress case, we have 
3 
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 2

1 0
E 1 0

1
10 0

2

 
 ν
 

= ν − ν  − ν
 
 

D   (11) 

For the plane strain case, we have 

 
( )( )

1 0
E 1 0

1 1 2
1 20 0

2

 
 − ν ν
 

= ν −ν + ν − ν  − ν
 
 

D   (12) 

The strain energy density is therefore introduced as 

 T T1 1W
2 2

= =ε σ ε Dε      (13) 

The internal energy of the body is written as 

 
0 0

T
int V

1hWdV dA
2W

Π = =∫ ∫ ε Dε    (14) 

where h  is the thickness, which is a constant. 

The external energy of the body is written as 

 
0 0

T T
ext dL dAhh

∂ΩΩ
Π = +∫ ∫u t u f   (15) 

where t  is the surface traction vector and f  is the body force vector. 

 1 1

2 2

t f
,  

t f
   

= =   
   

t f   (16) 

The total potential energy is written as 

 
( ) ( ) ( )

0 0 0

int ext

T T T1 dA dh L dA
2

h h
Ω ∂ΩΩ

Π = Π −Π

= − −∫ ∫ ∫

u u u

ε Dε u t u f 

  (17) 

Applying the principle of stationary potential energy, one has 
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( )[ ]

0 0 0

T T T

0

dA dL dA 0

d d

d d d
Ω ∂ΩΩ

Π =

⇒

− − =∫ ∫ ∫

u u

ε Dε u t u f 

  (18) 

This is just the variational form of equilibrium equations. 

8.5 Constant Strain Triangular (CST) Element 

8.5.1 Stiffness matrix and elemental equations for a CST element  

 

Fig. 1 

Consider a triangular element with thickness denoted as h shown in Fig. 1. There 

are 3 nodes defined at the 3 vertices of the triangle. The coordinate of the 3 nodes are 

listed as 

 31 2
1 2 3

31 2

xx x
,  ,  

yy y
    

= = =     
     

X X X   (19) 

At each node, a displacement vector with 2 degrees of freedom is defined 

 31 2
1 2 3

31 2

uu u
,  ,  

vv v
    

= = =     
     

u u u   (20) 

In addition, as shown in Fig. 2, corresponding nodal forces are defined 
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Fig. 2 

 Step 1: Write down the total potential energy 

 

( ) ( ) ( )

0

0

u1 v1 u2 v2 u3 v3

e

int t

1 1 2 2

e

ex

T
3 3

TT

1h u v u v u

d

f f f f f fdA h h h h h h
2
1h A h

v

2

Ω

Ω

Π = Π −Π

= − − − − −

=

−

−

∫

∫

u u u

ε Dε

ε Dε fu

 

 

  (21) 

where the nodal displacement vector is  

 

1

1

2
e

2

3

3

u
v
u
v
u
v

 
 
 
 

=  
 
 
 
  

u   (22) 

and the nodal force vector is 

 

u1

v1

u2
e

v2

u3

v3

f
f
f
f
f
f

 
 
 
 

=  
 
 
 
  

f   (23) 

Step 2: Assume the trial function for each component of the displacement 
6 
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field 

 
( )
( )

1 2 3

4 5 6

u x, y c c x c y

v x, y c c x c y

= + +

= + +
  (24) 

where 0 6c ~ c  are unknown coefficients to be determined. 

Step 3: Express the unknown coefficients in terms of the nodal degrees of 

freedom (or Find the shape functions) 

 

( )
( )
( )
( )
( )
( )

1 1 1 2 1 3 1 1

2 2 1 2 2 3 2 2

3 3 1 2 3 3 3 3

1 1 4 5 1 6 1 1

2 2 4 5 2 6 2 2

3 3 4 5 3 6 3 3

u x , y c c x c y u

u x , y c c x c y u

u x , y c c x c y u

v x , y c c x c y v

v x , y c c x c y v

v x , y c c x c y v

= + + =

= + + =

= + + =

= + + =

= + + =

= + + =

  (25) 

By rewriting the above equations in matrix form, one has 

 

1 1 1 1

2 2 2 2

3 3 3 3

1 1 4 1

2 2 5 2

3 3 6 3

1 x y c u
1 x y c u
1 x y c u

1 x y c v
1 x y c v
1 x y c v

     
     =     
          

     
     =     
          

  (26) 

Furthermore, by applying Cramer’s rule to solve the two systems of linear equations 

respectively, one has 
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( ) ( ) ( )

( )

( ) ( ) ( )

( )

1 1 1

2 2 2

1 1 1 2 1 32 2 1 1 1 13 3 3
1 1 2 3

3 3 3 3 2 2

1 1 2 2 3 3

1 1

2 2

1 2 2 2 3 22 1 13 3
2 1 2 3

3 3 2

1 1 2 2 3 3

1 1

2 2

3 3
3

u x y
u x y

x y x y x yu x y 1c 1 u 1 u 1 u
x y x y x y

1 u u u

1 u y
1 u y

1 y 1 y 1 y1 u y 1c 1 u 1 u 1 u
1 y 1 y 1 y

1 u u u

1 x u
1 x u
1 x u

 c

+ + +

+ + +

 
= = − + − + − ∆ ∆  

= α +α +α
∆

 
= = − + − + − ∆ ∆  

= β +β +β
∆

= ( ) ( ) ( )

( )

( ) ( ) ( )

( )

( )

1 3 2 3 3 32 1 1
1 2 3

3 3 2

1 1 2 2 3 3

1 1 1

2 2 2

1 1 1 2 1 32 2 1 1 1 13 3 3
4 1 2 3

3 3 3 3 2 2

1 1 2 2 3 3

1 1

2 2

1 2 23 3
5 1

3

1 x 1 x 1 x1 1 u 1 u 1 u
1 x 1 x 1 x

1 u u u

v x y
v x y

x y x y x yv x y 1c 1 v 1 v 1 v
x y x y x y

1 v v v  

1 v y
1 v y

1 y1 v y 1c = 1 v
1 y

+ + +

+ + +

+

 
= − + − + − ∆ ∆  

= c + c + c
∆

 
= = − + − + − ∆ ∆  

= α +α +α
∆

= − +
∆ ∆

( ) ( )

( )

( ) ( ) ( )

( )

2 2 3 21 1
2 3

3 2

1 1 2 2 3 3

1 1

2 2

1 3 2 3 3 32 1 13 3
6 1 2 3

3 3 2

1 1 2 2 3 3

1 y 1 y
1 v 1 v

1 y 1 y

1 v v v  

1 x v
1 x v

1 x 1 x 1 x1 x v 1c 1 v 1 v 1 v
1 x 1 x 1 x

1 v v v

+ +

+ + +

 
− + − 

 

= β +β +β
∆

 
= = − + − + − ∆ ∆  

= c + c + c
∆

  (27) 

where 

 
1 1

2 2

3 3

1 x y
1 x y
1 x y

∆ =   (28) 

and 
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1 2 3 3 2 2 3 1 1 3 3 1 3 3 1

1 2 3 2 3 1 3 1 2

1 3 2 2 1 3 3 2 1

x y x y ,  x y x y ,  x y x y
y y ,  y y ,  y y
x x ,  x x ,  x x

α = − α = − α = −

β = − β = − β = −
χ = − χ = − χ = −

  (29) 

Introducing Eq. (27) into Eq. (24), one has 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )
3

1 2 3

1 2 3

3

1 1 1 2 1 32 2 1 1 1 1

3

3
1 2 3

1

3

1 1 1 2 1

3

32 2 2 2

3 3

3 3 3 2 2

1 2 2 2 3 22 1 1

3 3 2

1 3 2 32 1 1

3 2

x y x y x y1u 1 1 1
x y x y x y

1 y 1 y 1 yx 1 1 1
1 y 1 y 1 y

1 x 1 x 1 xy + 1 1 1
1 x 1 x 1 x

y
x y 1 y 1 x

u u u

u u u

u u u

1u 1 x 1
x 1 y 1 x

+ + +

+ + +

+ + +

+ + +



− + −

 
= − + − + − ∆  

 
+ − + − + − ∆  

 
− + − + −



+ −

∆ 

=
∆

( ) ( ) ( )

( ) ( ) ( )

1

1 3 3 2 3

1

31 1 1 1

2

1 2 2 2 2 31 1

2

3

2

3 3 3

2

2

3

y

1
u

x y 1 y

x y 1 y 1 x
1 1 x

1 x
1 1 x 1 y

x y

x

1 1

1 y
y y 1

y x

x

u + + +

+ + +

 
 
 
 

+ 



− + − +

− + −

∆  
 

+ ∆ 

−

−


+

  (30) 

Moreover, we notice that 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

2 2 1

3 3

1 1

2

3
3

1 2 2 2 2 31 1 1 1

3 3

3

3

3

3

1 1

1 1 1 2 1 32 2 2 2

3 3

3
2

1 3 3 2 31 1 1 1

2 2

3

2
2

2

x y 1 y 1 x
1 1 x 1

x

y
x y

1 x y
1 x y
1 x y

1 x y
1 x y

y
y 1 y 1 x

1 1 x 1 y 1
x y 1 1

1 x y

1 x y
x y

1 x

1

x y 1 y 1 x
1 1 x 1 y

x y 1

y 1

y 1

x

y
x

x

+

+

+ +

+

+

+

+

+− = = ∆

= = ∆

+

− + − + − =

− + +

+ − −

−

= ∆

−   (31) 

So, we have 

 3
31 2

1 2u u u u∆∆ ∆
= + +
∆ ∆ ∆

  (32) 

Similarly, we have  

 3
31 2

1 2v v v v∆∆ ∆
= + +
∆ ∆ ∆

  (33) 

In addition, we notice that these determinants can be interpreted by the area of the 
9 
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triangle. 

 

Fig. 3 

As shown in Fig. 3, a point P(x,y) inside the triangle partitions the triangle into 3 

three smaller triangles by connecting the point to the 3 vertices (nodes).  

 Triangle Area Theorem (TAT) 

If the three vertices of a triangle is numbered in a counterclockwise manner and 

the coordinates of the three vertices are given as ( )i ix , y ,  i 1, 2,3= , then the area of 

the triangle is determined as  

 
123

1 1

T 2 2

3 3

1 x y
1A 1 x y
2

1 x y
=   (34) 

Proof: 

One can define two vectors as (See Fig. 4) 

 
( ) ( )
( ) ( )

1 2 1 1 2 1 2

2 3 1 1 3 1 2

x x y y

x x y y

= − + −

= − + −

v e e

v e e
  (35) 

Then the area of the parallelogram is  

10 
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P 1 2

2 1 2 1

3 1 3 1

1 1

2 1 2 1

3 1 3 1

1 1

2 2

3 3

A
x x y y
x x y y

1 x y
0 x x y y
0 x x y y

1 x y
1 x y
1 x y

= ×

− −
=

− −

= − −
− −

=

v v

  (36) 

So, the area of the triangle is half of the area of the parallelogram 

 
123

1 1

T P 2 2

3 3

1 x y
1 1A A 1 x y
2 2

1 x y
= =   (37) 

 

Fig. 4 

 By using the TAT, we can evaluate the areas of triangles shown in Fig. 3. 
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P 23

1P3

12P

123

1 T 2 2 1

3 3

1 1

2 T 2

3 3

1 1

3 T 2 2 3

1 1

T 2 2

3 3

1 x y
1 1A A 1 x y
2 2

1 x y

1 x y
1 1A A 1 x y
2 2

1 x y

1 x y
1 1A A 1 x y
2 2

1 x y

1 x y
1 1A A 1 x y
2 2

1 x y

= = = ∆

= = = ∆

= = = ∆

= = = ∆

  (38) 

Introducing Eq. (38) into Eq. (32) and Eq. (33), one has 

 
1 2 3 1 2 3

1 2 3 1 2 3

31 2
1 2 3

31 2
1 2 3

AA Au N N N
A A A

AA Av

u

N N N
A

u u u u u

v v v v v v
A A

= + + = + +

= + + = + +
  (39) 

where 31 2 AA A,  ,  
A A A

 are known as area coordinates. 

Eq. (39) could be rewritten in matrix form as  

 

1

1

2
e

1 2 3

1 2

3

3

2 3

N 0 N 0 N 0u

v

0 N 0 N 0

v

v
u

v

u

u
N

 
 
 
   

= =   
     

 
 
  

Nu   (40) 

Remarks: 

(1) From Eq. (39), we know that the shape functions could be directly derived by 

the so-called area coordinates of a point inside the triangle.  

Note that  

 31 2
1 2 3

AA AN N N 1
A A A

+ + = + + =   (41) 
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So, there are only two independent area coordinates. In addition, we notice that 

 
1

2

3

0 N 1
0 N 1
0 N 1

≤ ≤
≤ ≤
≤ ≤

  (42) 

and 

 ( )i j ijN δ=X   (43) 

Step 4: Evaluate the strain components in terms of the trial function 

Method-1:  

We start with the Eq. (40) 

 

31 2
1

31 2
2

1

1 2 3

1 2 3

1 2 3 1 3

2

3 31 2 1 2
2

u u u

v v v

NN Nu
x x x x

NN Nv
y y y y
u v
y x

N NN N N N
y y

u u u v v
y

v
x x x

∂∂ ∂∂
ε = = + +

∂ ∂ ∂ ∂
∂∂ ∂∂

ε = = + +
∂ ∂ ∂ ∂
∂ ∂

γ = +
∂ ∂

∂ ∂∂ ∂ ∂ ∂
= + + + +

∂ ∂ ∂ ∂ ∂ ∂
+





  (44) 

Eq. (44) could be rewritten in matrix form as 

 

31 2

1
31 2

2

12
3 31 1 2

e
2

3

2

1

1

2

3

NN N0 0 0
x x x

NN N0 0 0
y y y

N NN N N N
y x y x x

u
v
u
v
u
vy

  ∂∂ ∂
  

∂ ∂ ∂   e 
  ∂∂ ∂ = e = =    ∂ ∂ ∂    γ    ∂ ∂∂ ∂ ∂ ∂
  ∂ ∂ ∂ ∂ ∂ ∂     

uε B


   (45) 

Method-2:  

We start with Eq. (24) and Eq. (27) 
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( )

( )

( ) ( )

1 2 1 1 2 2 3 3

2 6 1 1 2 2 3 3

12 3 5

1 1 2 2 3 3 1 1 2 2 3 3

u 1c u u u
x
v 1c v v v
y
u v c c
y x

1 1u u u v v v  

∂
ε = = = β +β +β

∂ ∆
∂

ε = = = c + c + c
∂ ∆
∂ ∂

γ = + = +
∂ ∂

= c + c + c + β +β +β
∆ ∆





  (46) 

Eq. (46) could be rewritten in matrix form as 

 
1 1 2 3

2 1 2 3

12 1 1 2 2

e

3

3 3

1

1

2

2

3

u
v
u

0 0 0

v
u
v

1 0 0 0

 
 
 e β β β   
    = e = χχχ   =    ∆     γ χ β χ β χ β     
 
  

Buε


   (47) 

Remarks: 

(1) From Eq. (46), it is apparent that all the stain components are constant. That is 

why the element is called constant strain triangular element. 

(2) By comparing Eq. (45) and Eq. (47), we have the following relationships 

 

1 1 1 1

2 2 2 2

3 3 3 3

N N,  
x y

N N,  
x y

N N,  
x y

∂ β ∂ χ
= =

∂ ∆ ∂ ∆
∂ β ∂ χ

= =
∂ ∆ ∂ ∆
∂ β ∂ χ

= =
∂ ∆ ∂ ∆

  (48) 

Step 5: Express the total potential energy in terms of nodal displacement 

vector 

By introducing Eq. (45) into Eq. (21), one arrives at 

 ( )
0

TT T
e e ee e

1h dA h
2Ω

Π = −∫u uB uBu fD   (49) 

Step 6: Derive the equilibrium equations and stiffness matrix 
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By the principle of stationary potential energy, one has 

 
( )[ ]

0

T
e

e e

e

0

dA

d d

Ω

Π =

⇒

=∫

u

D

u

uB fB

  (50) 

Therefore, the stiffness matrix could be evaluated by 

 

0

0

T
CST

T

T

T

dA

dA

A
1
2

Ω

Ω

=

=

=

= ∆

∫
∫

K B ∆B

B ∆B

B ∆B

B ∆B

  (51) 

which is a 66 matrix.  

 Remarks: 

 (1) For plane stress problems, we have the stiffness matrix as 

 

( )

CST

1 1

1 1
1 2 3

2 2
1 2 32

2 2
1 1 2 2 3 3

3 3

3 3

0
0

1 0 0 0 0
0E 1 0 0 0 0

02 1 10 00
2

0

=

β χ 
   χ β   ν β β β 
 β χ    ν χχχ       χ β∆ −ν      − ν χ β χ β χ β    β χ

  
χ β  

K

  (52) 

 (2) For plane strain problems, we have the stiffness matrix as 

 

( )( )

CST

1 1

1 1
1 2 3

2 2
1 2 3

2 2
1 1 2 2 3 3

3 3

3 3

0
0

1 0 0 0 0
0E 1 0 0 0 0

02 1 1 2
1 20 00

2
0

=

β χ 
   χ β   − ν ν β β β 
 β χ    ν − ν χχχ       χ β∆ + ν − ν      − ν χ β χ β χ β    β χ

  
χ β  

K

  (53) 
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    8.5.2 Equivalent nodal forces for distributed surface traction 

 

Fig. 5 

 See the example shown in Fig. 5. The area coordinate of the point on the edge 

that is subjected to surface traction is  

 
1

2

3 1 2

N 0
N
N 1 N N 1

=
= ξ
= − − = −ξ

  (54) 

where [ ]0,1ξ∈  is a parameter. Introducing Eq. (54) into Eq. (40), one has 

 

1

1

2
e

2

3

3

u
v

u 0 0 0 1 0
v 0 0 0 0 1

u
v
u
v

 
 
 
 ξ − ξ   

= =    ξ − ξ     
 
 
  

Nu   (55) 

The surface traction is  

 
0
w
 

=  
 

t   (56) 

Therefore, by using the following work equivalent identity, one has 

 
e

e

1 T

0

1 T

0

T
ed

d

ξ

ξ

⇒

=

=

∫

∫

u t

N

u f

ft

  (57) 
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8.5.3 Example 

 

Fig. 6 

 Consider a 2D plane stress problem as shown in Fig. 6. A 2D square elastic 

domain with edge length L is subject to a constant traction t on its top surface and a 

fixed B.C. on its left edge. The thickness is 1. We would like to use finite element 

method to find the displacement field. For simplicity and illustration, we apply the 

CST element first. 

 Step 1 Discretize domain; Numbering nodes and elements 

 

Fig. 7 

Step 2 Evaluate element stiffness matrix and equations 

For Element 1: 
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 The nodal coordinates are 

 
1 1

2 2

3 3

x 0,  y 0
x L,  y L
x 0,  y L

= =
= =
= =

  (58) 

 The area of the triangle is  

 

2

2

1A L
2

L

=

⇒

∆ =

  (59) 

 The B-matrix parameters are evaluated as 

 1 2 3

1 2 3

0,  L,  L
L,  0,  L

β = β = β = −
χ = − χ = χ =

  (60) 

 The stiffness matrix is evaluated as 
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( )

( )

( )

( ) ( ) ( ) ( )

( ) ( ) ( )

( )

2 2 2 2

2 2 2 2

2 2 2

2 2 2

2 2

1

2 2

2 2

L

0 0 L
0 L 0

1 0 0 0 L 0 L 0
L 0 0E 1 0 0 L 0 0 0 L
0 0 L2L 1 1 L 0 0 L L L0 0L 0 L 2
0 L L

L L L L1 0 0 1 1 1
2 2 2 2

0 L L 0 L
L 0 L L

L L L1 1 1
2 2 2

L L3

1L

1
2 2

E
2

=

+

− 
   −   ν − 
     ν −     − ν      − ν − −

− ν − −ν − −ν −ν

− ν ν −



− ν

−ν −ν − −

   −
  

− 

= ν

−ν −

−ν

K

( )

( )
2LSym 3

2

 
 
 
 
 
 
 
 
 
 
 
 
 
  

ν

− ν

  (61) 

 In addition, the equivalent nodal force is evaluated as 

 
1

e 0

0
0 0 0
0 0 0

0 0 1d w0 w 2
1 0 0

0 1 1 w
2

 
  
  
  
  ξ  
 = ξ =   ξ    
  − ξ   

− ξ   
  

∫f   (62) 

For Element 2: 

 

The nodal coordinates are 
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1 1

2 2

3 3

x 0,  y 0
x L,  y 0
x L,  y L

= =
= =
= =

  (63) 

 The area of the triangle is  

 

2

2

1A L
2

L

=

⇒

∆ =

  (64) 

 The B-matrix parameters are evaluated as 

 1 2 3

1 2 3

L,  L,  0
0,  L,  L

β = − β = β =
χ = χ = − χ =

  (65) 

 The stiffness matrix is evaluated as 

 

( )

( )

( )

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )

2 2 2 2

2 2 2 2

2 2 2
2

2 2
2

2

2

2 2

2 2

L 0 0
0 0 L

1 0 L

0

0 L 0 0 0
L 0 LE 1 0 0 0 0 L 0 L
0 L

2

L2L 1 1 0 L L L L 00 00 0 L 2
0 L

L 0 L L 0 L
L L L L1 1 1 1
2 2 2 2

L L L3 1 1 L
2 2 2

L L3 1 L

L

0

E
2

2 2
L 1

=

− 
   −   ν − 
 −    ν −     −−ν      − ν − −

− ν − ν

−ν −ν − −ν − −ν

−ν − + ν − −ν

   
  

 

=
−ν

ν

−ν −ν −

K

( )
2

1 0

Sym L

 
 
 
 
 
 
 
 
 




− ν


 
 
 
 

  (66) 

Step 3 Assemble all the elemental stiffness matrices and force vectors 
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 By direct stiffness method, the global stiffness matrix is assembled as 

 

( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )

( )

( ) ( ) ( )

( ) ( )

( )

2 2 2 2

2 2 2 2

2 2 2

2 2 2

2 2 2 2

2 2 2 2

2 2

2

2
2

2 2
2

2 22

2

2

2

0 0

0

0 0

0

L L L L

L L L L1 1 1 1
2 2 2 2

L L L3 1 1 L
2 2

L L L L1 1 1 1
2 2 2 2

L L L L

L L L

L L L1 1 1
2 2 2

y

2
L L3 1 L
2 2

L 1 0
2

L

2

3

0E
2L 1

S

L L 1
2 2

Lm 3

=








+ − ν − ν

−ν + −ν − −ν − −ν

−ν − + ν − −ν ν

−ν −ν −

−ν − −ν − −ν −ν

− ν ν −

− ν

−ν −

ν

ν − −ν

−ν −



− +

+ ν

−ν

+

−ν

K








 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



  (67) 

 The nodal force is assembled as 

 

0
0
0
0
0
w
2
0
w
2

 
 
 
 
 
 
 =  
 
 
 
 
 
  

f   (68) 

Step 4 Apply boundary conditions 

Since the left edge is fixed, the boundary conditions are 

 1 1 4 4u v u v 0= = = =   (69) 

After deleting corresponding rows and columns in the global stiffness, one obtains 

 
( )

( ) ( ) ( )

( ) ( )

( )

( )

2 2 2
2

2

2 2

2

2

2
2

2

2

L L L3 1 1 L
2 2 2

L L3 1 L
2E

2L 1
0

2
L

2
L 1

Lm L
2

y 1S

 
 
 
 
 

=  
− ν  

 
 
 
 

−

 
−

−ν − + ν − −ν ν

ν −ν −

−ν +

+ ν

K   (70) 

So 
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( )

( ) ( ) ( )

( ) ( )

( )

( )

2 2 2

2
2

2

2

2

2 2
2

2

2

2
2

3

3

0u
0vE

L

2

L L L

L

3

2

0u2 1
0

1 1 L
2 2 2

L L3 1 L
2

L

2
L

wv
2

S

1

L 1ym

 
 
             =    − ν            

− ν − + ν − −ν ν

−ν

ν

−

−
 

−

 


ν

−

+


ν +

  (71) 

The solution is  

 ( )
( )

3 2
2

2 3 2
2

3 24 3 2
3

2
3

u 3 18 29 5
w 1v 3 3 27 35

u 3 5 3 5E 3 8 146 368 265
v 24 100 100

   ν − ν + ν −
   − ν − ν + ν + ν −   =
   − ν + ν + ν −ν + ν − ν + ν −
  

ν − ν −   

  (72) 

 

22 
 



  Lecture 9 2D plane linear elements  Yanhui Jiang 

Lecture 9 2D plane linear elements 

In the previous lecture, we have learnt how to derive the stiffness matrix of a 

constant strain triangular element and use direct stiffness method to solve 2D plane 

stress/strain problems. In this lecture, we will talk about the standardization of the 

method in terms of 2D plane elements, i.e., the standard 3 node triangular element and 

the standard 4 node quadrilateral element. 

9.1 Natural coordinates and Standard computation domain 

9.1.1 Example 

 

Fig. 1 

Let’s consider such a field problem defined in the 2D space. The field domain is a 

line segment. The problem is to find the following integral over the field domain 

 
L 2

0
I x y ds= +∫   (1) 

where s is the arc-length of the line segment, or called the natural coordinate, (x, y) 

is the coordinate of a point in the line segment. 

For Case 1 as shown in Fig. 1, we first do parameterization for the coordinates  

1 
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( )

( )

2ˆx x s s
2
2ˆy y s s

2


= =


 = =

  (2) 

The length of the line segment is L 2= . Therefore, we have 

 
2 2

2 2 2 3

0
00

2 1 2 1 5 2I s s ds s s
2 2 4 6 6

= + = + =∫   (3) 

For Case 2 as shown in Fig. 1, still, we first do parameterization for the 

coordinates 

 
( )

( )

2ˆx x s s
2

2ˆy y s 1 s
2


= =


 = = −

  (4) 

The length of the line segment is L 2= . Therefore, we have 

 

2
2 2 2

0 0

2 2
2 3

00

2 2 2 1I s 1 s ds s 1 s ds
2 2 2 2

2 1 5 2s 2 s
4 6 6

 
= + − = − + +  

 

= − + + =

∫ ∫
  (5) 

9.1.2 Standard computation domain 

 

Fig. 2 

Now, we consider mapping the line segment shown in Fig. 1 (Case 1) to the 

standard computation domain shown in Fig. 2, where ξ  is a natural coordinate.  

Step 1 Assume a mapping function 

 1 2

3 4

x c c
y c c
= + x

 = + x
  (6) 
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Step 2 Apply known nodal coordinate and solve for the unknown coefficients 

 

( )
( )
( )
( )

1

1 2

3

4

x 0 c 0
x 1 c c 1

y 0 c 0
y 1 c 1

= =
 = + =
 = =
 = =

  (7) 

Step 3 Obtain the parameterized coordinates 

 
x
y
= x

 = x
  (8) 

Step 4 Evaluate the differentials 

 2 2ds dx dy 2d= + = x   (9) 

Step 5 Evaluate the integral 

 ( )1 2

0

5 2I 2d
6

= ξ + ξ ξ =∫   (10) 

Similarly, the line segment shown in Fig. 1 (Case 2) can also be mapped to the 

standard computation domain to evaluate the integral. 

9.2 Standard triangular linear element (C2D3 element) 

 

Fig. 3 C2D3 element 
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The shape of the element is shown in Fig. 3. About the name C2D3, “C” is short 

for “Continuum”, 2D is short for “2D space”, 3 stands for “3 nodes”. 

Convention for the edge numbering: 

edge-1： node1-node2 

edge-2： node2-node3 

edge-3： node3-node1 

Step 1: Derive the shape functions of C2D3: 

 
( )
( )
( )

1

2

3

ˆ , 1
ˆ ,
ˆ ,

ϕ ξ η = −ξ −η

ϕ ξ η = ξ

ϕ ξ η = η

  (11) 

Step 2: Create the N matrix for interpolation 

 1 2 3

1 2 3

ˆ ˆ ˆ0 0 0
ˆ ˆ ˆ0 0 0

ϕ ϕ ϕ 
=  ϕ ϕ ϕ 

N   (12) 

Thereby, the field variable could be interpolated as 

 

1

1

2
e

2

3

3

u
v
uu
vv
u
v

 
 
 
  

= = =   
   

 
 
  

u Nu N   (13) 

In addition, the field domain coordinate could be interpolated as 

 

1

1

2
e

2

3

3

x
y
xx
yy
x
y

 
 
 
  

= = =   
   

 
 
  

X NX N   (14) 

 Remarks: 
4 
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Note that both the field variables (u, v) and the field coordinates (x, y) are 

parameterized by the same natural coordinates ( ,  ξ η ). This kind of interpolation is 

also known as iso-parametric interpolation. The advantage is that the computation 

tasks (e.g., integration) are all changed to the computation domain. This facilitates 

standardization. 

Step 3: Create the C matrix by the nodal coordinates 

 1 2 3

1 2 3

x x x
y y y
 

=  
 

C   (15) 

Step 4: Create the H matrix by the derivatives of the shape functions 

 

1 1

2 2

3 3

ˆ ˆ

1 1
ˆ ˆ

1 0
0 1

ˆ ˆ

 ∂ϕ ∂ϕ
 ∂ξ ∂η  − − 
 ∂ϕ ∂ϕ  = =   ∂ξ ∂η     ∂ϕ ∂ϕ
 ∂ξ ∂η 

H   (16) 

Step 5: Create the J matrix  

 

x x

y y

∂ ∂ 
 ∂x ∂η = =
∂ ∂ 
 ∂x ∂η 

J CH   (17) 

whose determinant J  relates the differentials between the field domain and the 

computation domain. 

 dxdy d d= x ηJ   (18) 

Step 6: Create the Γ  matrix 
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1 1

12 2

3 3

ˆ ˆ
x y
ˆ ˆ
x y
ˆ ˆ
x y

−

 ∂ϕ ∂ϕ
 ∂ ∂ 
 ∂ϕ ∂ϕ

= = ∂ ∂ 
 ∂ϕ ∂ϕ
 ∂ ∂ 

Γ HJ   (19) 

Step 7: Create the B matrix for interpolation 

 
11 21 31

12 22 32

12 11 22 21 32 31

0 0 0
0 0 0
Γ Γ Γ 
 = Γ Γ Γ 
 Γ Γ Γ Γ Γ Γ 

B   (20) 

Thereby, the derivative of field variable such as strain could be interpolated as 

 
1

2 e

12

e 
 = e = 
 γ 

ε Bu


   (21) 

Step 8: Create the D matrix (plane stress/plane strain) 

For the plane stress case, we have 

 2

1 0
E 1 0

1
10 0

2

 
 ν
 

= ν − ν  − ν
 
 

D   (22) 

For the plane strain case, we have 

 
( )( )

1 0
E 1 0

1 1 2
1 20 0

2

 
 − ν ν
 

= ν −ν + ν − ν  − ν
 
 

D   (23) 

Step 9: Create the K matrix (i.e., the stiffness matrix) 

 
1 1 T

0 0
h d d

−ξ
= ξ h∫ ∫K B DB J   (24) 

where h denotes the thickness. 

9.3 Standard quadrilateral linear element (C2D4 element) 
6 
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Fig. 4 C2D4 element 

The shape of the element is shown in Fig. 4. About the name C2D4, “C” is short 

for “Continuum”, 2D is short for “2D space”, 4 stands for “4 nodes”. 

Convention for the edge numbering: 

Edge-1： node1-node2 

Edge-2： node2-node3 

Edge-3： node3-node4 

Edge-4： node4-node1 

Step 1: Derive the shape functions of C2D3: 

 

( ) ( )( )
( ) ( )( )
( ) ( )( )
( ) ( )( )

1

2

3

4

ˆ , 1 1 4
ˆ , 1 1 4
ˆ , 1 1 4
ˆ , 1 1 4

ϕ ξ η = −ξ −η

ϕ ξ η = + ξ −η

ϕ ξ η = + ξ +η

ϕ ξ η = −ξ +η

  (25) 

Step 2: Create the N matrix for interpolation 

 1 2 3 4

1 2 3 4

ˆ ˆ ˆ ˆ0 0 0 0
ˆ ˆ ˆ ˆ0 0 0 0

ϕ ϕ ϕ ϕ 
=  ϕ ϕ ϕ ϕ 

N   (26) 
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Thereby, the field variable could be interpolated as 

 

1

1

2

2
e

3

3

4

4

u
v
u
vu
uv
v
u
v

 
 
 
 
 

   = = =      
 
 
 
  

u Nu N   (27) 

In addition, the field domain coordinate could be interpolated as 

 

1

1

2

2
e

3

3

4

4

x
y
x
yx
xy
y
x
y

 
 
 
 
 

   = = =      
 
 
 
  

X NX N   (28) 

Step 3: Create the C matrix by the nodal coordinates 

 1 2 3 4

1 2 3 4

x x x x
y y y y
 

=  
 

C   (29) 

Step 4: Create the H matrix by the derivatives of the shape functions 

 

( ) ( )
( ) ( )
( ) ( )
( ) ( )

1 1

2 2

3 3

4 4

ˆ ˆ

1 4 1 4ˆ ˆ
1 4 1 4

ˆ ˆ 1 4 1 4
1 4 1 4

ˆ ˆ

∂ϕ ∂ϕ 
 ∂ξ ∂η 

− −η − −ξ ∂ϕ ∂ϕ 
   −η − + ξ∂ξ ∂η   = =
 + η + ξ∂ϕ ∂ϕ 
  ∂ξ ∂η − +η −ξ   

∂ϕ ∂ϕ 
 ∂ξ ∂η 

H   (30) 

Step 5: Create the J matrix  
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x x

y y

∂ ∂ 
 ∂x ∂η = =
∂ ∂ 
 ∂x ∂η 

J CH   (31) 

whose determinant J  relates the differentials between the field domain and the 

computation domain. 

 dxdy d d= x ηJ   (32) 

Step 6: Create the Γ  matrix 

 

1 1

2 2

1

3 3

4 4

ˆ ˆ
x y
ˆ ˆ
x y
ˆ ˆ
x y
ˆ ˆ
x y

−

∂ϕ ∂ϕ 
 ∂ ∂ 
∂ϕ ∂ϕ 
 ∂ ∂ = =
∂ϕ ∂ϕ 
 ∂ ∂ 
 ∂ϕ ∂ϕ
 ∂ ∂ 

Γ HJ   (33) 

Step 7: Create the B matrix for interpolation 

 
11 21 31 41

12 22 32 42

12 11 22 21 32 31 42 41

0 0 0 0
0 0 0 0
Γ Γ Γ Γ 
 = Γ Γ Γ Γ 
 Γ Γ Γ Γ Γ Γ Γ Γ 

B   (34) 

Thereby, the derivative of field variable such as strain could be interpolated as 

 
1

2 e

12

e 
 = e = 
 γ 

ε Bu


   (35) 

Step 8: Create the D matrix (plane stress/plane strain) 

For the plane stress case, we have 

 2

1 0
E 1 0

1
10 0

2

 
 ν
 

= ν − ν  − ν
 
 

D   (36) 
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For the plane strain case, we have 

 
( )( )

1 0
E 1 0

1 1 2
1 20 0

2

 
 − ν ν
 

= ν −ν + ν − ν  − ν
 
 

D   (37) 

Step 9: Create the K matrix (i.e., the stiffness matrix) 

 
1 1 T

1 1
h d d

− −
= ξ h∫ ∫K B DB J   (38) 

where h denotes the thickness. 

Remarks: 

In the above, we have introduced two types of continuum element (C2D3 and 

C2D4 element) in 2D space: one is of triangular shape; the other is of quadrilateral 

shape.  

We see that once the shape and node placement of an element is determined in the 

standard parameterized space, shape functions defined in terms of the natural 

coordinates should be determined correspondingly to each degree of freedom. We 

have shown how to obtain these shape functions in the previous lectures by defining a 

trial function with unknown coefficients and desired properties, e.g., a linear 

polynomial. 

As the start point of a standard procedure for computing the stiffness matrix, 

shape functions play an important role. If the set of shape functions of an element 

satisfy the following two conditions 

 
( )

N

i
i 1

i j ij

ˆ 1

ˆ
=

j =

j = δ

∑
X

  

10 
 



  Lecture 9 2D plane linear elements  Yanhui Jiang 

the element belongs to the genre of so-called compatible elements. Otherwise, it is 

called incompatible element. 

9.4 Gaussian quadrature 

As we can see from Eq. (24) and Eq. (38), the evaluation of the stiffness matrix of 

an element is finally attributed to computing integrals. This could be easily done by a 

numerical integration, e.g., Gaussian quadrature. 

For example, if we would like to compute the integration of a function ( )f ξ  

over the domain [ ]1,1−  

 ( )
1

1
f d

−
ξ ξ∫   (39) 

Step 1: Evaluate the following basic integration 

 

( )

( )

( )

( )

( )

( )

1

0 1
1

1 1

12 2
2 1

13 3
3 1

14 4
4 1

15 5
5 1

f 1 1d 2

f d 0

2f d
3

f d 0

2f d
5

f d 0

−

−

−

−

−

−

ξ = ⇒ ξ =

ξ = ξ⇒ ξ ξ =

ξ = ξ ⇒ ξ ξ =

ξ = ξ ⇒ ξ ξ =

ξ = ξ ⇒ ξ ξ =

ξ = ξ ⇒ ξ ξ =

∫
∫

∫

∫

∫

∫


  (40) 

Step 2: Assume a Gauss integration formula 

 ( ) ( )
N1

i i1
i 1

f d w f
−

=

ξ ξ = ξ∑∫   (41) 

where N is the number of Gauss point in the domain, iw  is the weight and iξ  is the 

natural coordinate of the i-th Gauss point.  

Step 3: Determine the weight and position of Gauss points for various N 

When N 1= , we call the formula one point integration. The weight and position 
11 
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for each Gauss point could be determined as 

 

( ) ( )

( ) ( )

1

0 1 0 1 11
1

1 1 1 1 1 11

1 1

f d 2 w f w

f d 0 w f w

0,  w 2

−

−

 ξ ξ = = ξ =

 ξ ξ = = ξ = ξ
⇒
ξ = =

∫
∫

  (42) 

This formula is suitable for integrating a polynomial of highest degree 1. 

When N 2= , we call the formula two point integration. The weight and position 

for each Gauss point could be determined as 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1

0 1 0 1 2 0 2 1 21
1

1 1 1 1 2 1 2 1 1 2 21

1 2 2
2 1 2 1 2 2 2 1 1 2 21

1 3 3
3 1 3 1 2 3 2 1 1 2 21

1 1

2 2

f d 2 w f w f w w

f d 0 w f w f w w

2f d w f w f w w
3

f d 0 w f w f w w

3 ,  w 1
3

3 ,  w 1
3

−

−

−

−

 ξ ξ = = ξ + ξ = +


ξ ξ = = ξ + ξ = ξ + ξ

 ξ ξ = = ξ + ξ = ξ + ξ



ξ ξ = = ξ + ξ = ξ + ξ
⇒

ξ = − =

ξ = =

∫
∫

∫

∫   (43) 

This formula is suitable for integrating a polynomial of highest degree 3. 

When N 3= , we call the formula three point integration. The weight and 

position for each Gauss point could be determined as 

12 
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( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( )

31

0 i 0 i 1 2 31
i

31

1 i 1 i 1 1 2 2 3 31
i
31 2 2 2

2 i 2 i 1 1 2 1 3 11
i
31 3 3 3

3 i 3 i 1 1 2 1 3 11
i
31 4 4 4

4 i 4 i 1 1 2 1 3 11
i

1

51

f d 2 w f w w w

f d 0 w f w w w

2f d w f w w w
3

f d 0 w f w w w

2f d w f w w w
5

f d

−
=

−
=

−
=

−
=

−
=

−

ξ ξ = = ξ = + +

ξ ξ = = ξ = ξ + ξ + ξ

ξ ξ = = ξ = ξ + ξ + ξ

ξ ξ = = ξ = ξ + ξ + ξ

ξ ξ = = ξ = ξ + ξ + ξ

ξ ξ =

∑∫

∑∫

∑∫

∑∫

∑∫

∫ ( )
3

5 5 5
i 5 i 1 1 2 1 3 1

i

1 1

2 2

3 3

0 w f w w w

15 5,  w
5 9

80,  w
9

15 5,  w
5 9

=
















 = ξ = ξ + ξ + ξ
⇒

ξ = − =

ξ = =

ξ = =

∑

  (44) 

This formula is suitable for integrating a polynomial of highest degree 5. 

13 
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Lecture 10 2D plane quadratic elements 

In this lecture, we go on to introduce 2D continuum elements. The differences 

mainly lie in the number of nodes in these elements and their corresponding shape 

functions.  

10.1 C2D6 element 

 

Fig. 1 C2D6 

The shape of the element is shown in Fig. 1. About the name C2D6, “C” is short 

for “Continuum”, 2D is short for “2 dimension”, 6 stands for “6 nodes”. 

Convention for the edge numbering: 

edge-1： node1-node4-node2 

edge-2： node2-node5-node3 

edge-3： node3-node6-node1 

Step 1: Derive the shape functions of C2D6: 
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( ) ( )( )
( ) ( )
( ) ( )
( ) ( )
( )
( ) ( )

1

2

3

4

5

6

ˆ , 1 1 2 2
ˆ , 2 1
ˆ , 2 1
ˆ , 4 1
ˆ , 4
ˆ , 4 1

ϕ ξ η = −ξ −η − ξ − η

ϕ ξ η = ξ ξ −

ϕ ξ η = η η−

ϕ ξ η = ξ −ξ −η

ϕ ξ η = ξη

ϕ ξ η = η −ξ −η

  (1) 

Step 2: Create the N matrix for interpolation 

 1 2 6

1 2 6

ˆ ˆ ˆ0 0 0
ˆ ˆ ˆ0 0 0

ϕ ϕ ϕ 
=  ϕ ϕ ϕ 

N




  (2) 

Thereby, the field variable could be interpolated as 

 

1

1

2

e 2

6

6

u
v
u

u
v

v

u
v

 
 
 
 

   = = =   
   

 
 
  

u Nu N


  (3) 

In addition, the field domain coordinate could be interpolated as 

 

1

1

2

e 2

6

6

x
y
x

x
y

y

x
y

 
 
 
 

   = = =   
   

 
 
  

X NX N


  (4) 

Step 3: Create the C matrix by the nodal coordinates 

 1 2 6

1 2 6

x x x
y y y
 

=  
 

C




  (5) 

Step 4: Create the H matrix by the derivatives of the shape functions 
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( ) ( )

( )

( )

1 1

2 2

3 3

4 4

5 5

6 6

ˆ ˆ

ˆ ˆ
3 4 4 3 4 4

4 1 0ˆ ˆ
0 4 1

ˆ ˆ 4 1 2 4
4 4

ˆ ˆ 4 4 1 2

ˆ ˆ

∂ϕ ∂ϕ 
 ∂ξ ∂η 
∂ϕ ∂ϕ 
  − − ξ − η − − ξ − η ∂ξ ∂η   ξ −∂ϕ ∂ϕ   
   η−∂ξ ∂η = =  

− ξ −η − ξ∂ϕ ∂ϕ   
   ∂ξ ∂η η ξ   
∂ϕ ∂ϕ  − η −ξ − η   ∂ξ ∂η 
∂ϕ ∂ϕ 
 ∂ξ ∂η 

H   (6) 

Step 5: Create the J matrix  

 

x x

y y

∂ ∂ 
 ∂x ∂η = =
∂ ∂ 
 ∂x ∂η 

J CH   (7) 

whose determinant J  relates the differentials between the field domain and the 

computation domain. 

 dxdy d d= x ηJ   (8) 

Step 6: Create the Γ  matrix 

 1−=Γ HJ   (9) 

Step 7: Create the B matrix for interpolation 

 
11 21 61

12 22 62

12 11 22 21 62 61

0 0 0
0 0 0
Γ Γ Γ 
 = Γ Γ Γ 
 Γ Γ Γ Γ Γ Γ 

B






  (10) 

Thereby, the derivative of field variable such as strain could be interpolated as 

 
1

2 e

12

 
 = = 
  

ε Bu




e
e
γ

  (11) 

Step 8: Create the D matrix (plane stress/plane strain) 
3 
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For the plane stress case, we have 

 2

1 0
E 1 0

1
10 0

2

 
 ν
 

= ν − ν  − ν
 
 

D   (12) 

For the plane strain case, we have 

 
( )( )

1 0
E 1 0

1 1 2
1 20 0

2

 
 − ν ν
 

= ν −ν + ν − ν  − ν
 
 

D   (13) 

Step 9: Create the K matrix (i.e., the stiffness matrix) 

 
1 1 T

0 0
h d d

−ξ
= ξ h∫ ∫K B DB J   (14) 

where h denotes the thickness. 

10.2 C2D8 element 

 

Fig. 1 C2D8 

The shape of the element is shown in Fig. 1. About the name C2D8, “C” is short 

for “Continuum”, 2D is short for “2 dimension”, 8 stands for “8 nodes”. It is also 
4 
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called an 8-node serendipity element 

Convention for the edge numbering: 

Edge-1： node1-node5-node2 

Edge-2： node2-node6-node3 

Edge-3： node3-node7-node4 

Edge-4： node4-node8-node1 

Step 1: Derive the shape functions of C2D8: 

 

( ) ( )( )( )
( ) ( )( )( )
( ) ( )( )( )
( ) ( )( )( )
( ) ( )( )
( ) ( )( )
( ) ( )( )
( ) ( )( )

1

2

3

4

2
5

2
6

2
7

2
8

ˆ , 1 1 1 4
ˆ , 1 1 1 4
ˆ , 1 1 1 4
ˆ , 1 1 1 4

ˆ , 1 1 2

ˆ , 1 1 2

ˆ , 1 1 2

ˆ , 1 1 2

ϕ ξ η = −ξ −η − −ξ −η

ϕ ξ η = + ξ −η − + ξ −η

ϕ ξ η = + ξ +η − + ξ +η

ϕ ξ η = −ξ +η − −ξ +η

ϕ ξ η = −ξ −η

ϕ ξ η = + ξ −η

ϕ ξ η = −ξ +η

ϕ ξ η = −ξ −η

  (15) 

Step 2: Create the N matrix for interpolation 

 1 2 8

1 2 8

ˆ ˆ ˆ0 0 0
ˆ ˆ ˆ0 0 0

ϕ ϕ ϕ 
=  ϕ ϕ ϕ 

N




  (16) 

Thereby, the field variable could be interpolated as 

 

1

1

2

e 2

8

8

u
v
u

u
v

v

u
v

 
 
 
 

   = = =   
   

 
 
  

u Nu N


  (17) 

In addition, the field domain coordinate could be interpolated as 
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1

1

2

e 2

8

8

x
y
x

x
y

y

x
y

 
 
 
 

   = = =   
   

 
 
  

X NX N


  (18) 

Step 3: Create the C matrix by the nodal coordinates 

 1 2 8

1 2 8

x x x
y y y
 

=  
 

C




  (19) 

Step 4: Create the H matrix by the derivatives of the shape functions 

 

( )( ) ( )( )

( )( ) ( )( )

( )( ) ( )

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

ˆ ˆ
1 11 2 1 2
4 4ˆ ˆ
1 11 2 1 2
4 4

ˆ ˆ 1 11 2 1
4 4

ˆ ˆ

ˆ ˆ

ˆ ˆ

ˆ ˆ

ˆ ˆ

∂ϕ ∂ϕ 
 ∂ξ ∂η −η ξ +η −ξ ξ + η 
∂ϕ ∂ϕ 
  −η ξ −η + ξ −ξ + η∂ξ ∂η 
∂ϕ ∂ϕ 
  + η ξ +η + ξ ξ +∂ξ ∂η 
∂ϕ ∂ϕ 
 ∂ξ ∂η = =
∂ϕ ∂ϕ 
 ∂ξ ∂η 
∂ϕ ∂ϕ 
 ∂ξ ∂η 
∂ϕ ∂ϕ 
 ∂ξ ∂η 
 ∂ϕ ∂ϕ
 ∂ξ ∂η 

H

( )

( )( ) ( )( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

2

2

2

2

2

1 11 2 1 2
4 4

11 1
2

1 1 1
2

11 1
2

1 1 1
2

 
 
 
 
 
 
 η
 
 

+ η ξ −η −ξ −ξ + η 
 
 

−ξ −η − −ξ 
 
 −η − + ξ η 
 
 −ξ + η −ξ
 
 
 − −η − −ξ η
    (20) 

Step 5: Create the J matrix  

 

x x

y y

∂ ∂ 
 ∂x ∂η = =
∂ ∂ 
 ∂x ∂η 

J CH   (21) 

whose determinant J  relates the differentials between the field domain and the 

computation domain. 
6 
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 dxdy d d= x ηJ   (22) 

Step 6: Create the Γ  matrix 

 1−= ⋅Γ H J   (23) 

Step 7: Create the B matrix for interpolation 

 
11 21 61

12 22 62

12 11 22 21 62 61

0 0 0
0 0 0
Γ Γ Γ 
 = Γ Γ Γ 
 Γ Γ Γ Γ Γ Γ 

B






  (24) 

Thereby, the derivative of field variable such as strain could be interpolated as 

 
1

2 e

12

e 
 = e = 
 γ 

ε Bu


   (25) 

Step 8: Create the D matrix (plane stress/plane strain) 

For the plane stress case, we have 

 2

1 0
E 1 0

1
10 0

2

 
 ν
 

= ν − ν  − ν
 
 

D   (26) 

For the plane strain case, we have 

 
( )( )

1 0
E 1 0

1 1 2
1 20 0

2

 
 − ν ν
 

= ν −ν + ν − ν  − ν
 
 

D   (27) 

Step 9: Create the K matrix (i.e., the stiffness matrix) 

 
1 1 T

1 1
h d d

− −
= ξ h∫ ∫K B DB J   (28) 

where h denotes the thickness. 
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Remarks: 

The reason to choose quadratic elements 

 While the linear elements have fewer DoFs and thus is faster in computation, its 

accuracy is not good. C2D3 element should be avoided as much as possible in stress 

analysis since it is too stiff and has a low convergence rate even when mesh is fine. In 

contrast, a quadratic element has a higher accuracy. 

In some application, using fine mesh for linear elements is not able to improve 

the accuracy due to that the field variable essentially requires higher order terms in the 

trial function to approximate its behavior.  

In addition, quadratic elements can model curved surface with fewer elements 

and is good for bending dominant problems 
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Lecture 11 3D solid elements 

In this lecture, we will go through the linear 3D solid elements (i.e., C3D4 

element and C3D8 element) and the quadratic 3D solid elements (i.e., C3D10 element 

and C3D20 element). In contrast to the 2D elements introduced in the previous 

lectures, the 3D elements have more DoFs and more complex shape functions. 

11.1 C3D4 element 

 

Fig.1 C3D4 

    The shape of the element is shown in Fig. 1. About the name C3D4, “C” is short 

for “Continuum”, 3D is short for “3 dimension”, 4 stands for “4 nodes”. 

Convention for the edge numbering: 

surface-1： node1-node2-node3 

surface-2： node1-node2-node4 

surface-3： node2-node3-node4 

surface-4： node1-node4-node3 

Step 1: Derive the shape functions of C3D4: 
1 
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( )
( )
( )
( )

1

2

3

4

ˆ , , 1
ˆ , ,
ˆ , ,
ˆ , ,

ϕ ξ η ζ = −ξ −η−ζ

ϕ ξ η ζ = ξ

ϕ ξ η ζ = η

ϕ ξ η ζ = ζ

  (1) 

Step 2: Create the N matrix for interpolation 

 
1 2 4

1 2 4

1 2 4

ˆ ˆ ˆ0 0 0 0 0 0
ˆ ˆ ˆ0 0 0 0 0 0

ˆ ˆ ˆ0 0 0 0 0 0

ϕ ϕ ϕ 
 = ϕ ϕ ϕ 
 ϕ ϕ ϕ 

N






  (2) 

Thereby, the field variable could be interpolated as 

 

1

1

1

2

2
e

2

4

4

4

u
v
w
u

u
v

v
w

w

u
v
w

 
 
 
 
 
     = = =         
 
 
 
 
  

u Nu N



  (3) 

In addition, the field domain coordinate could be interpolated as 

 

1

1

1

2

2
e

2

4

4

4

x
y
z
x

x
y

y
z

z

x
y
z

 
 
 
 
 
     = = =         
 
 
 
 
  

X NX N



  (4) 

Step 3: Create the C matrix by the nodal coordinates 
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1 2 4

1 2 4

1 2 4

x x x
y y y
z z z

 
 =  
  

C






  (5) 

Step 4: Create the H matrix by the derivatives of the shape functions 

 

1 1 1

2 2 2

4 4 4

ˆ ˆ ˆ

1 1 1
ˆ ˆ ˆ

1 0 0
0 1 0
0 0 1ˆ ˆ ˆ

∂ϕ ∂ϕ ∂ϕ 
 ∂ξ ∂η ∂ζ  − − − 
∂ϕ ∂ϕ ∂ϕ   
   ∂ξ ∂η ∂ζ= =   
   
   ∂ϕ ∂ϕ ∂ϕ 
∂ξ ∂η ∂ζ  

H
  

  (6) 

Step 5: Create the J matrix  

 

x x x

y y y

z z z

 ∂ ∂ ∂
 ∂x ∂η ∂z 
 ∂ ∂ ∂

= = ∂x ∂η ∂z 
 ∂ ∂ ∂
 ∂x ∂η ∂z 

J CH   (7) 

whose determinant J  relates the differentials between the field domain and the 

computation domain. 

 dxdydz d d d= x η zJ   (8) 

Step 6: Create the Γ  matrix 

 

1 1 1

2 2 2
1

4 4 4

ˆ ˆ ˆ
x y z
ˆ ˆ ˆ
x y z

ˆ ˆ ˆ
x y z

−

∂ϕ ∂ϕ ∂ϕ 
 ∂ ∂ ∂ 
∂ϕ ∂ϕ ∂ϕ 
 ∂ ∂ ∂= = 
 
 ∂ϕ ∂ϕ ∂ϕ 
 ∂ ∂ ∂ 

Γ HJ
  

  (9) 

Step 7: Create the B matrix for interpolation 
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11 21 41

12 22 42

13 23 43

12 11 22 21 42 41

13 11 23 21 43 41

13 12 23 22 43 42

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0 0 0
0 0 0

0 0 0

Γ Γ Γ 
 Γ Γ Γ 
 Γ Γ Γ

=  Γ Γ Γ Γ Γ Γ 
 Γ Γ Γ Γ Γ Γ
 

Γ Γ Γ Γ Γ Γ  

B













  (10) 

Thereby, the derivative of field variable such as strain could be interpolated as 

 

1

2

3
e

12

13

23

e 
 e 
 e

= = γ 
 γ
 
γ  

ε Bu







   (11) 

Step 8: Create the D matrix (plane stress/plane strain) 

 

2 0 0 0
2 0 0 0

2 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

µ + λ λ λ 
 λ µ + λ λ 
 λ λ µ + λ

=  µ 
 µ
 

µ 

D   (12) 

where µ  and λ  are called Lame constants. 

 

( )( )

E G
2(1 )

E
1 1 2

µ = =
+ ν

ν
λ =

+ ν − ν

  (13) 

Step 9: Create the K matrix (i.e., the stiffness matrix) 

 
1 1 1 T

0 0 0
d d d

−ξ −ξ−η
= ξ η ζ∫ ∫ ∫K B DB J   (14) 

Remarks: 

To derive the shape functions for C3D4 element, one might directly use the so 

called volume coordinates, which are similar to the area-coordinates for C2D3 
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element that is introduced in the previous lecture. 

 

Fig. 2 Volume coordinates of a point in a tetrahedral element 

Tetrahedron Volume Theorem (TVT) 

If the four vertices of a tetrahedron is numbered per the right hand rule as shown 

in Fig. 2 and the coordinates of the four vertices are given as ( )i i ix , y , z ,  i 1, 2,3, 4= , 

then the volume of the tetrahedron is determined as  

 
1234

1 1 1

2 2 2
T

3 3 3

4 4 4

1 x y z
1 x y z1V
1 x y z6
1 x y z

=   (15) 

So, for an arbitrary point P ( )x, y, z  inside the tetrahedron, four smaller 

constitutive tetrahedrons could be formed, i.e, P234 1P34 12P4 123PT ,T ,T ,T   

 

P 234 1P34

12P 4 123P

1 1 1

2 2 2
T T

3 3 3 3 3 3

4 4 4 4 4 4

1 1 1 1 1 1

2 2 2 2 2 2
T T

3 3 3

4 4 4

1 1 x y z

z

1 x y z 11 1V V
1 x y z 1 x y z6 6
1 x y z 1 x y z

1 x y z 1 x y z
1 x y z 1 x y z1 1V V
1 1 x y z6 6
1 x y xz

x y z
x y z

x y z
y1

= =

= =

  (16) 

The volume-coordinates are defined as 
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 P 234 1P34 123P12P 4

1234 1234 1234 1234

T T TT
1 2 3 4

T T T T

V V VV
L ,L ,L ,L

V V V V
= = = =   (17) 

It is noted that the volume-coordinates obey the following relationships that shape 

functions should satisfy 

 
( )

4

i
i 1

i j ij

L 1

L
=

=

= δ

∑
X

  (18) 

It is easy to derive the shape functions given in Eq. (1)by using the 

volume-coordinates, i.e.,  

 

1 1

2 2

3 3

4 4

ˆ L
ˆ L
ˆ L
ˆ L

ϕ =
ϕ =
ϕ =
ϕ =

  (19) 

11.2 C3D8 element 

  

Fig. 3 C3D8 

    The shape of the element is shown in Fig. 3. About the name C3D8, “C” is short 

for “Continuum”, 3D is short for “3 dimension”, 8 stands for “8 nodes”. 

Convention for the edge numbering: 
6 
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Surface-1： node1-node4-node3-node2 

Surface-2： node5-node6-node7-node8 

Surface-3： node1-node2-node6-node5 

Surface-4： node2-node3-node7-node6 

Surface-5： node3-node4-node8-node7 

Surface-6： node1-node5-node8-node4 

Step 1: Derive the shape functions of C3D8: 

 

( ) ( )( )( )
( ) ( )( )( )
( ) ( )( )( )
( ) ( )( )( )
( ) ( )( )( )
( ) ( )( )( )
( ) ( )( )( )
( ) ( )( )( )

1

2

3

4

5

6

7

8

ˆ , , 1 1 1 8
ˆ , , 1 1 1 8
ˆ , , 1 1 1 8
ˆ , , 1 1 1 8
ˆ , , 1 1 1 8
ˆ , , 1 1 1 8
ˆ , , 1 1 1 8
ˆ , , 1 1 1 8

ϕ ξ η ζ = −ξ −η −ζ

ϕ ξ η ζ = + ξ −η −ζ

ϕ ξ η ζ = + ξ +η −ζ

ϕ ξ η ζ = −ξ +η −ζ

ϕ ξ η ζ = −ξ −η + ζ

ϕ ξ η ζ = + ξ −η + ζ

ϕ ξ η ζ = + ξ +η + ζ

ϕ ξ η ζ = −ξ +η + ζ

  (20) 

Step 2: Create the N matrix for interpolation 

 
1 2 8

1 2 8

1 2 8

ˆ ˆ ˆ0 0 0 0 0 0
ˆ ˆ ˆ0 0 0 0 0 0

ˆ ˆ ˆ0 0 0 0 0 0

ϕ ϕ ϕ 
 = ϕ ϕ ϕ 
 ϕ ϕ ϕ 

N






  (21) 

Thereby, the field variable could be interpolated as 
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1

1

1

2

2
e

2

8

8

8

u
v
w
u

u
v

v
w

w

u
v
w

 
 
 
 
 
     = = =         
 
 
 
 
  

u Nu N



  (22) 

In addition, the field domain coordinate could be interpolated as 

 

1

1

1

2

2
e

2

8

8

8

x
y
z
x

x
y

y
z

z

x
y
z

 
 
 
 
 
     = = =         
 
 
 
 
  

X NX N



  (23) 

Step 3: Create the C matrix by the nodal coordinates 

 
1 2 8

1 2 8

1 2 8

x x x
y y y
z z z

 
 =  
  

C






  (24) 

Step 4: Create the H matrix by the derivatives of the shape functions 

 

1 1 1

2 2 2

8 8 8

ˆ ˆ ˆ

ˆ ˆ ˆ

ˆ ˆ ˆ

∂ϕ ∂ϕ ∂ϕ 
 ∂ξ ∂η ∂ζ 
∂ϕ ∂ϕ ∂ϕ 
 ∂ξ ∂η ∂ζ=  
 
 ∂ϕ ∂ϕ ∂ϕ 
∂ξ ∂η ∂ζ  

H
  

  (25) 

Step 5: Create the J matrix  
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x x x

y y y

z z z

 ∂ ∂ ∂
 ∂x ∂η ∂z 
 ∂ ∂ ∂

= = ∂x ∂η ∂z 
 ∂ ∂ ∂
 ∂x ∂η ∂z 

J CH   (26) 

whose determinant J  relates the differentials between the field domain and the 

computation domain. 

 dxdydz d d d= x η zJ   (27) 

Step 6: Create the Γ  matrix 

 

1 1 1

2 2 2
1

8 8 8

ˆ ˆ ˆ
x y z
ˆ ˆ ˆ
x y z

ˆ ˆ ˆ
x y z

−

∂ϕ ∂ϕ ∂ϕ 
 ∂ ∂ ∂ 
∂ϕ ∂ϕ ∂ϕ 
 ∂ ∂ ∂= = 
 
 ∂ϕ ∂ϕ ∂ϕ 
 ∂ ∂ ∂ 

Γ HJ
  

  (28) 

Step 7: Create the B matrix for interpolation 

 

11 21 81

12 22 82

13 23 83

12 11 22 21 82 81

13 11 23 21 83 81

13 12 23 22 83 82

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0 0 0
0 0 0

0 0 0

Γ Γ Γ 
 Γ Γ Γ 
 Γ Γ Γ

=  Γ Γ Γ Γ Γ Γ 
 Γ Γ Γ Γ Γ Γ
 

Γ Γ Γ Γ Γ Γ  

B













  (29) 

Thereby, the derivative of field variable such as strain could be interpolated as 

 

1

2

3
e

12

13

23

e 
 e 
 e

= = γ 
 γ
 
γ  

ε Bu







   (30) 

Step 8: Create the D matrix (plane stress/plane strain) 
9 
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2 0 0 0
2 0 0 0

2 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

µ + λ λ λ 
 λ µ + λ λ 
 λ λ µ + λ

=  µ 
 µ
 

µ 

D   (31) 

where µ  and λ  are called Lame constants. 

 

( )( )

E G
2(1 )

E
1 1 2

µ = =
+ ν

ν
λ =

+ ν − ν

  (32) 

Step 9: Create the K matrix (i.e., the stiffness matrix) 

 
1 1 1 T

1 1 1
d d d

− − −
= ξ η ζ∫ ∫ ∫K B DB J   (33) 

11.3 C3D10 element 

 

Fig. 4 C3D10 

    The shape of the element is shown in Fig. 4. About the name C3D10, “C” is 

short for “Continuum”, 3D is short for “3D dimension”, 10 stands for “10 nodes”. 

Convention for the edge numbering: 

surface-1： node1-node2-node3 
10 
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surface-2： node1-node2-node4 

surface-3： node2-node3-node4 

surface-4： node1-node4-node3 

Step 1: Derive the shape functions of C3D10: 

 

( ) ( )
( ) ( )
( ) ( )
( ) ( )
( )
( )
( )
( )
( )
( )

1 1 1

2 2 2

3 3 3

4 4 4

5 1 2

6 2 3

7 1 3

8 1 4

9 2 4

10 3 4

ˆ , , 2t 1 t
ˆ , , 2t 1 t
ˆ , , 2t 1 t
ˆ , , 2t 1 t
ˆ , , 4t t
ˆ , , 4t t
ˆ , , 4t t
ˆ , , 4t t
ˆ , , 4t t
ˆ , , 4t t

ϕ ξ η ζ = −

ϕ ξ η ζ = −

ϕ ξ η ζ = −

ϕ ξ η ζ = −

ϕ ξ η ζ =

ϕ ξ η ζ =

ϕ ξ η ζ =

ϕ ξ η ζ =

ϕ ξ η ζ =

ϕ ξ η ζ =

  (34) 

where 

 

( )
( )
( )
( )

1

2

3

4

t , , 1

t , ,

t , ,

t , ,

ξ η ζ = −ξ −η−ζ

ξ η ζ = ξ

ξ η ζ = η

ξ η ζ = ζ

  (35) 

Step 2: Create the N matrix for interpolation 

 
1 2 10

1 2 10

1 2 10

ˆ ˆ ˆ0 0 0 0 0 0
ˆ ˆ ˆ0 0 0 0 0 0

ˆ ˆ ˆ0 0 0 0 0 0

ϕ ϕ ϕ 
 = ϕ ϕ ϕ 
 ϕ ϕ ϕ 

N






  (36) 

Thereby, the field variable could be interpolated as 

11 
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1

1

1

2

2
e

2

10

10

10

u
v
w
u

u
v

v
w

w

u
v
w

 
 
 
 
 
     = = =         
 
 
 
 
  

u Nu N



  (37) 

In addition, the field domain coordinate could be interpolated as 

 

1

1

1

2

2
e

2

10

10

10

x
y
z
x

x
y

y
z

z

x
y
z

 
 
 
 
 
     = = =         
 
 
 
 
  

X NX N



  (38) 

Step 3: Create the C matrix by the nodal coordinates 

 
1 2 10

1 2 10

1 2 10

x x x
y y y
z z z

 
 =  
  

C






  (39) 

Step 4: Create the H matrix by the derivatives of the shape functions 

 

1 1 1

2 2 2

10 10 10

ˆ ˆ ˆ

ˆ ˆ ˆ

ˆ ˆ ˆ

∂ϕ ∂ϕ ∂ϕ 
 ∂ξ ∂η ∂ζ 
∂ϕ ∂ϕ ∂ϕ 

 ∂ξ ∂η ∂ζ=  
 
 ∂ϕ ∂ϕ ∂ϕ 
∂ξ ∂η ∂ζ  

H
  

  (40) 

Step 5: Create the J matrix  

12 
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x x x

y y y

z z z

 ∂ ∂ ∂
 ∂x ∂η ∂z 
 ∂ ∂ ∂

= = ∂x ∂η ∂z 
 ∂ ∂ ∂
 ∂x ∂η ∂z 

J CH   (41) 

whose determinant J  relates the differentials between the field domain and the 

computation domain. 

 dxdydz d d d= x η zJ   (42) 

Step 6: Create the Γ  matrix 

 

1 1 1

2 2 2
1

10 10 10

ˆ ˆ ˆ
x y z
ˆ ˆ ˆ
x y z

ˆ ˆ ˆ
x y z

−

∂ϕ ∂ϕ ∂ϕ 
 ∂ ∂ ∂ 
∂ϕ ∂ϕ ∂ϕ 

 ∂ ∂ ∂= = 
 
 ∂ϕ ∂ϕ ∂ϕ 
 ∂ ∂ ∂ 

Γ HJ
  

  (43) 

Step 7: Create the B matrix for interpolation 

 

11 21 1

12 22 2

13 23 3

12 11 22 21 2 1

13 11 23 21 3 1

13 12 23 22

10

10

10

10 10

10 10

0 103 21

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0 0 0
0 0 0

0 0 0

Γ Γ Γ 
 Γ Γ Γ 
 Γ Γ Γ

=  Γ Γ Γ Γ Γ Γ 
 Γ Γ Γ Γ Γ Γ
 

Γ Γ Γ Γ Γ Γ  

B













  (44) 

Thereby, the derivative of field variable such as strain could be interpolated as 

 

1

2

3
e

12

13

23

e 
 e 
 e

= = γ 
 γ
 
γ  

ε Bu







   (45) 

Step 8: Create the D matrix (plane stress/plane strain) 
13 
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2 0 0 0
2 0 0 0

2 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

µ + λ λ λ 
 λ µ + λ λ 
 λ λ µ + λ

=  µ 
 µ
 

µ 

D   (46) 

where µ  and λ  are called Lame constants. 

 

( )( )

E G
2(1 )

E
1 1 2

µ = =
+ ν

ν
λ =

+ ν − ν

  (47) 

Step 9: Create the K matrix (i.e., the stiffness matrix) 

 
1 1 1 T

0 0 0
d d d

−ξ −ξ−η
= ξ η ζ∫ ∫ ∫K B DB J   (48) 

11.4 C3D20 element 

 

Fig. 5 C3D20 

    The shape of the element is shown in Fig. 5. About the name C3D20, “C” is 

short for “Continuum”, 3D is short for “3 dimension”, 20 stands for “20 nodes”. 

Convention for the edge numbering: 

Surface-1： node1-node4-node3-node2 
14 
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Surface-2： node5-node6-node7-node8 

Surface-3： node1-node2-node6-node5 

Surface-4： node2-node3-node7-node6 

Surface-5： node3-node4-node8-node7 

Surface-6： node1-node5-node8-node4 

Step 1: Derive the shape functions of C3D20: 

 

( ) ( )( )( )( )
( ) ( )( )( )( )
( ) ( )( )( )( )
( ) ( )( )( )( )
( ) ( )( )( )( )
( ) ( )( )( )( )
( ) ( )( )( )( )
( )

1

2

3

4

5

6

7

8

ˆ , , 1 1 1 2 8
ˆ , , 1 1 1 2 8
ˆ , , 1 1 1 2 8
ˆ , , 1 1 1 2 8
ˆ , , 1 1 1 2 + 8
ˆ , , 1 1 1+ 2 + 8
ˆ , , 1 1 1+ 2 + 8
ˆ , , 1

ϕ ξ η ζ = −ξ −η −ζ − −ξ −η−ζ

ϕ ξ η ζ = + ξ −η −ζ − + ξ −η−ζ

ϕ ξ η ζ = + ξ +η −ζ − + ξ +η−ζ

ϕ ξ η ζ = −ξ +η −ζ − −ξ +η−ζ

ϕ ξ η ζ = −ξ −η + ζ − −ξ −η ζ

ϕ ξ η ζ = + ξ −η ζ − + ξ −η ζ

ϕ ξ η ζ = + ξ +η ζ − + ξ +η ζ

ϕ ξ η ζ = −( )( )( )( )
( ) ( )( )( ) ( ) ( )( )( )
( ) ( )( )( ) ( ) ( )( )( )
( ) ( )( )( ) ( ) ( )( )( )
( ) ( )( )( ) ( ) ( )( )( )
( )

2 2
9 10

2 2
11 12

2 2
13 14

2 2
15 16

17

1 1+ 2 + 8

ˆ ˆ, , 1 1 1 4   , , 1 1 1 4

ˆ ˆ, , 1 1 1 4   , , 1 1 1 4

ˆ ˆ, , 1 1 1+ 4   , , 1 1 1+ 4

ˆ ˆ, , 1 1 1+ 4   , , 1 1 1+ 4

ˆ , ,

ξ + η ζ − −ξ +η ζ

ϕ ξ η ζ = −ξ −η −ζ ϕ ξ η ζ = + ξ −η −ζ

ϕ ξ η ζ = −ξ +η −ζ ϕ ξ η ζ = −ξ −η −ζ

ϕ ξ η ζ = −ξ −η ζ ϕ ξ η ζ = + ξ −η ζ

ϕ ξ η ζ = −ξ +η ζ ϕ ξ η ζ = −ξ −η ζ

ϕ ξ η ζ ( )( )( ) ( ) ( )( )( )
( ) ( )( )( ) ( ) ( )( )( )

2 2
18

2 2
19 20

ˆ1 1 1 4   , , 1 1 1 4

ˆ ˆ, , 1 1 1 4   , , 1 1 1 4

= −ξ −η −ζ ϕ ξ η ζ = + ξ −η −ζ

ϕ ξ η ζ = + ξ +η −ζ ϕ ξ η ζ = −ξ +η −ζ
 (49) 

Step 2: Create the N matrix for interpolation 

 
1 2 20

1 2 20

1 2 20

ˆ ˆ ˆ0 0 0 0 0 0
ˆ ˆ ˆ0 0 0 0 0 0

ˆ ˆ ˆ0 0 0 0 0 0

ϕ ϕ ϕ 
 = ϕ ϕ ϕ 
 ϕ ϕ ϕ 

N






  (50) 

Thereby, the field variable could be interpolated as 
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1

1

1

2

2
e

2

20

20

20

u
v
w
u

u
v

v
w

w

u
v
w

 
 
 
 
 
     = = =         
 
 
 
 
  

u Nu N



  (51) 

In addition, the field domain coordinate could be interpolated as 

 

1

1

1

2

2
e

2

20

20

20

x
y
z
x

x
y

y
z

z

x
y
z

 
 
 
 
 
     = = =         
 
 
 
 
  

X NX N



  (52) 

Step 3: Create the C matrix by the nodal coordinates 

 
1 2 20

1 2 20

1 2 20

x x x
y y y
z z z

 
 =  
  

C






  (53) 

Step 4: Create the H matrix by the derivatives of the shape functions 

 

1 1 1

2 2 2

20 20 20

ˆ ˆ ˆ

ˆ ˆ ˆ

ˆ ˆ ˆ

∂ϕ ∂ϕ ∂ϕ 
 ∂ξ ∂η ∂ζ 
∂ϕ ∂ϕ ∂ϕ 

 ∂ξ ∂η ∂ζ=  
 
 ∂ϕ ∂ϕ ∂ϕ 
∂ξ ∂η ∂ζ  

H
  

  (54) 

Step 5: Create the J matrix  

16 
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x x x

y y y

z z z

 ∂ ∂ ∂
 ∂x ∂η ∂z 
 ∂ ∂ ∂

= = ∂x ∂η ∂z 
 ∂ ∂ ∂
 ∂x ∂η ∂z 

J CH   (55) 

whose determinant J  relates the differentials between the field domain and the 

computation domain. 

 dxdydz d d d= x η zJ   (56) 

Step 6: Create the Γ  matrix 

 

1 1 1

2 2 2
1

20 20 20

ˆ ˆ ˆ
x y z
ˆ ˆ ˆ
x y z

ˆ ˆ ˆ
x y z

−

∂ϕ ∂ϕ ∂ϕ 
 ∂ ∂ ∂ 
∂ϕ ∂ϕ ∂ϕ 

 ∂ ∂ ∂= = 
 
 ∂ϕ ∂ϕ ∂ϕ 
 ∂ ∂ ∂ 

Γ HJ
  

  (57) 

Step 7: Create the B matrix for interpolation 

 

11 21 1

12 22 2

13 23 3

12 11 22 21 2 1

13 11 23 21 3 1

13 12 23 22

20

20

20

20 20

20 20

0 203 22

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0 0 0
0 0 0

0 0 0

Γ Γ Γ 
 Γ Γ Γ 
 Γ Γ Γ

=  Γ Γ Γ Γ Γ Γ 
 Γ Γ Γ Γ Γ Γ
 

Γ Γ Γ Γ Γ Γ  

B













  (58) 

Thereby, the derivative of field variable such as strain could be interpolated as 

 

1

2

3
e

12

13

23

e 
 e 
 e

= = γ 
 γ
 
γ  

ε Bu







   (59) 

Step 8: Create the D matrix (plane stress/plane strain) 
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2 0 0 0
2 0 0 0

2 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

µ + λ λ λ 
 λ µ + λ λ 
 λ λ µ + λ

=  µ 
 µ
 

µ 

D   (60) 

where µ  and λ  are called Lame constants. 

 

( )( )

E G
2(1 )

E
1 1 2

µ = =
+ ν

ν
λ =

+ ν − ν

  (61) 

Step 9: Create the K matrix (i.e., the stiffness matrix) 

 
1 1 1 T

1 1 1
d d d

− − −
= ξ η ζ∫ ∫ ∫K B DB J   (62) 

Remarks: 

In engineering practice, 3D analysis is usually expensive. It is common to 

simplify a 3D problem to a 2D one. In addition, coarse mesh and low order elements 

are preferred at the initial prediction. As the computer technology progresses, 3D solid 

elements get more and more popular in engineering practice. In some circumstances, 

3D solid element show more advantage, especially for those 2D elements are not 

suitable. 
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Lecture 12 Axially symmetric elements 

In this lecture, we will briefly introduce the axially symmetric solid elements. 

These elements are used for axially symmetric structures, e.g. a hollowed cylinder as 

shown in Fig. 1. These elements are essentially 3D solid elements but have similar 

shape functions as that of 2D case. 

 

Fig.1 A hollowed cylinder and its coordinate system 

12.1 CAX3 element 

 

Fig.2 CAX3 

    The shape of the element is shown in Fig. 2. About the name CAX3, “C” is short 
1 
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for “Continuum”, AX is short for “axial symmetric”, 3 stands for “3 nodes”. 

Convention for the edge numbering: 

edge-1： node1-node2 

edge-2： node2-node3 

edge-3： node3-node1 

Step 1: Derive the shape functions of CAX3: 

 
( )
( )
( )

1

2

3

ˆ , 1
ˆ ,
ˆ ,

ϕ ξ η = −ξ −η

ϕ ξ η = ξ

ϕ ξ η = η

  (1) 

Step 2: Create the N matrix for interpolation 

 1 2 3

1 2 3

ˆ ˆ ˆ0 0 0
ˆ ˆ ˆ0 0 0

ϕ ϕ ϕ 
=  ϕ ϕ ϕ 

N   (2) 

Thereby, the field variable could be interpolated as 

 

1

1

2
e

2

3

3

u
v
uu
vv
u
v

 
 
 
  

= = =   
   

 
 
  

u Nu N   (3) 

In addition, the field domain coordinate could be interpolated as 

 

1

1

2
e

2

3

3

r
z
rr
zz
r
z

 
 
 
  

= = =   
   

 
 
  

X NX N   (4) 

 Remarks: 

This step is quite similar to that of the plane stress/plane strain case. Notice the 
2 
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coordinate is denoted as (r, z).  

Step 3: Create the C matrix by the nodal coordinates 

 1 2 3

1 2 3

r r r
z z z
 

=  
 

C   (5) 

Step 4: Create the H matrix by the derivatives of the shape functions 

 

1 1

2 2

3 3

ˆ ˆ

ˆ ˆ

ˆ ˆ

 ∂ϕ ∂ϕ
 ∂ξ ∂η 
 ∂ϕ ∂ϕ

=  ∂ξ ∂η 
 ∂ϕ ∂ϕ
 ∂ξ ∂η 

H   (6) 

Step 5: Create the J matrix  

 

r r

z z

∂ ∂ 
 ∂ξ ∂η = =
∂ ∂ 
 ∂ξ ∂η 

J CH   (7) 

whose determinant J  relates the differentials between the field domain and the 

computation domain. 

 drdz d d= ξ ηJ   (8) 

Step 6: Create the Γ  matrix 

 

1 1

12 2

3 3

ˆ ˆ
r z
ˆ ˆ
r z
ˆ ˆ
r z

−

∂ϕ ∂ϕ 
 ∂ ∂ 
∂ϕ ∂ϕ = = ∂ ∂
 ∂ϕ ∂ϕ 
 ∂ ∂ 

Γ HJ   (9) 

Step 7: Create the B matrix for interpolation 
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11 21 31

12 22 32

12 11 22 21 32 31

1 2 3ˆ ˆ ˆr

0 0 0
0 0 0

0 0 r 0r

Γ Γ Γ 
 Γ Γ Γ =
 
 Γ Γ Γ Γ Γ Γ 

ϕ ϕ ϕ
B   (10) 

Thereby, the derivative of field variable such as strain could be interpolated as 

 

r

z
e

rz

u
r
v
z

u
r

u v
z r

θ

∂ 
 ∂ e  ∂  e  ∂ = = =  e     γ 
 ∂ ∂

+ 
∂ ∂ 

ε Bu









  (11) 

Step 8: Create the D matrix (axially symmetric case) 

 

2 0
2 0

2 0
0 0 0

µ + λ λ λ 
 λ µ + λ λ =
 λ λ µ + λ
 µ 

D   (12) 

where µ  and λ  are called Lame constants. 

 

( )( )

E G
2(1 )

E
1 1 2

µ = =
+ ν

ν
λ =

+ ν − ν

  (13) 

Step 9: Create the K matrix (i.e., the stiffness matrix) 

 

2 1 1 T

0 0 0
1 1 T

0 0
r

d d

2

dr

d d

π −ξ

−ξ

= θ ξ η

= ξπ η

∫ ∫ ∫
∫ ∫

K B DB J

B DB J
  (14) 

12.2 CAX4 element 
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Fig. 3 CAX4 element 

The shape of the element is shown in Fig. 3. About the name CAX4, “C” is short 

for “Continuum”, 2D is short for “axially symmetric”, 4 stands for “4 nodes”. 

Convention for the edge numbering: 

Edge-1： node1-node2 

Edge-2： node2-node3 

Edge-3： node3-node4 

Edge-4： node4-node1 

Step 1: Derive the shape functions of CAX4: 

 

( ) ( )( )
( ) ( )( )
( ) ( )( )
( ) ( )( )

1

2

3

4

ˆ , 1 1 4
ˆ , 1 1 4
ˆ , 1 1 4
ˆ , 1 1 4

ϕ ξ η = −ξ −η

ϕ ξ η = + ξ −η

ϕ ξ η = + ξ +η

ϕ ξ η = −ξ +η

  (15) 

Step 2: Create the N matrix for interpolation 

 1 2 3 4

1 2 3 4

ˆ ˆ ˆ ˆ0 0 0 0
ˆ ˆ ˆ ˆ0 0 0 0

ϕ ϕ ϕ ϕ 
=  ϕ ϕ ϕ ϕ 

N   (16) 
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Thereby, the field variable could be interpolated as 

 

1

1

2

2
e

3

3

4

4

u
v
u
vu
uv
v
u
v

 
 
 
 
 

   = = =      
 
 
 
  

u Nu N   (17) 

In addition, the field domain coordinate could be interpolated as 

 

1

1

2

2
e

3

3

4

4

r
z
r
zr
rz
z
r
z

 
 
 
 
 

   = = =      
 
 
 
  

X NX N   (18) 

Step 3: Create the C matrix by the nodal coordinates 

 1 2 3 4

1 2 3 4

r r r r
z z z z
 

=  
 

C   (19) 

Step 4: Create the H matrix by the derivatives of the shape functions 

 

1 1

2 2

3 3

4 4

ˆ ˆ

ˆ ˆ

ˆ ˆ

ˆ ˆ

∂ϕ ∂ϕ 
 ∂ξ ∂η 
∂ϕ ∂ϕ 
 ∂ξ ∂η =
∂ϕ ∂ϕ 
 ∂ξ ∂η 
∂ϕ ∂ϕ 
 ∂ξ ∂η 

H   (20) 

Step 5: Create the J matrix  
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r r

z z

∂ ∂ 
 ∂ξ ∂η = =
∂ ∂ 
 ∂ξ ∂η 

J CH   (21) 

whose determinant J  relates the differentials between the field domain and the 

computation domain. 

 drdz d d= ξ ηJ   (22) 

Step 6: Create the Γ  matrix 

 

1 1

2 2

1

3 3

4 4

ˆ ˆ
r z
ˆ ˆ
r z
ˆ ˆ
r z
ˆ ˆ
r z

−

∂ϕ ∂ϕ 
 ∂ ∂ 
∂ϕ ∂ϕ 
 ∂ ∂= = ∂ϕ ∂ϕ 
 ∂ ∂
 ∂ϕ ∂ϕ 
∂ ∂ 

Γ HJ   (23) 

Step 7: Create the B matrix for interpolation 

 

11 21 31 41

12 22 32 42

12 11

3

22 21 32 31 4 1

4

2 4

1 2

0 0 0 0
0 0 0 0

ˆ ˆ ˆ ˆr r r r0 0 0 0ϕ ϕ ϕ


Γ Γ Γ Γ 
 Γ Γ Γ Γ =
 
 Γ Γ Γ Γ Γ Γ Γ Γ 

ϕ
B   (24) 

Thereby, the derivative of field variable such as strain could be interpolated as 

 

r

z
e

rz

u
r
v
z

u
r

u v
z r

θ

∂ 
 ∂ e  ∂  e  ∂ = = =  e     γ 
 ∂ ∂

+ 
∂ ∂ 

ε Bu









  (25) 

Step 8: Create the D matrix (axially symmetric case) 
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2 0
2 0

2 0
0 0 0

µ + λ λ λ 
 λ µ + λ λ =
 λ λ µ + λ
 µ 

D   (26) 

where µ  and λ  are called Lame constants. 

 

( )( )

E G
2(1 )

E
1 1 2

µ = =
+ ν

ν
λ =

+ ν − ν

  (27) 

Step 9: Create the K matrix (i.e., the stiffness matrix) 

 

2 1 1 T

0 1 1
1 1 T

1 1
r

d d d

d2 d

r
π

− −

− −

= θ ξ η

= ξπ η

∫ ∫ ∫
∫ ∫

K B DB J

B DB J
  (28) 

Remarks: 

In the above, it is shown that the procedure to evaluate the stiffness matrix is 

quite similar to that of 2D cases. In contrast to 2D plane stress/strain element, we see 

that the B matrix and D matrix are apparently different. In addition, the stiffness 

matrix is also different. Herein, we just show the axially symmetric linear elements 

CAX3 and CAX4. It is easy to generalize the procedure and apply it to the quadratic 

elements CAX6 and CAX8. 
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